Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 35, 2022 - Issue 5
587
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Effect of new punched vortex generators in a rectangular channel on heat transfer using Taguchi method

, &
Pages 611-636 | Received 21 Jan 2021, Accepted 03 May 2021, Published online: 17 May 2021

References

  • G. Biswas, H. Chattopadhyay, and A. Sinha, “Augmentation of heat transfer by creation of streamwise longitudinal vortices using vortex generators,” Heat Transfer Engineering, vol. 33, no. 4, pp.406–424, 2012. DOI: 10.1080/01457632.2012.614150.
  • S. Chamoli, “A Taguchi approach for optimization of flow and geometrical parameters in a rectangular channel roughened with V down perforated baffles,” Case Studies in Thermal Engineering, vol. 5, pp. 59–69, 2015. DOI: 10.1016/j.csite.2015.01.001.
  • B. Sahin, İ. Ates, E. Manay, A. Bayrakceken, and C. Celik, “Optimization of design parameters for heat transfer and friction factor in a heat sink with hollow trapezoidal baffles,” Appl. Therm. Eng., vol. 154, pp. 76–86, 2019. DOI: 10.1016/j.applthermaleng.2019.03.056.
  • I. Kotcioglu, A. Cansiz, and M. N. Khalaji, “Experimental investigation for optimization of design parameters in a rectangular duct with plate-fins heat exchanger by Taguchi method,” Appl. Therm. Eng., vol. 50, no. 1, pp.604–613, 2013. DOI: 10.1016/j.applthermaleng.2012.05.036.
  • G. Tanda, “Effect of rib spacing on heat transfer and friction in a rectangular channel with 450 angled rib turbulators on one/two walls,” Int J Heat Mass Transf, vol. 54, no. 5–6, pp.1081–1090, 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.11.015.
  • S. Agrawal, T. W. Simon, M. North, D. Bissell, and T. Cui, “Heat transfer augmentation of a channel flow by active agitation and surface mounted cylindrical pin fins,” Int J Heat Mass Transf, vol. 87, pp. 557–567, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.04.036.
  • P. S. B. Zdanski, D. Pauli, and D. A. L. Dauner, “Effects of delta winglet vortex generators on flow of air over in-line tube bank: a new empirical correlation for heat transfer prediction,” International Communications in Heat and Mass Transfer, vol. 67, pp. 89–96, 2015. DOI: 10.1016/j.icheatmasstransfer.2015.07.010.
  • J. M. Wu and W. Q. Tao, “Effect of longitudinal vortex generator on heat transfer in rectangular channels,” Appl. Therm. Eng., vol. 37, pp. 67–72, 2012. DOI: 10.1016/j.applthermaleng.2012.01.002.
  • C. H. Min, C. Y. Qi, X. F. Kong, and J. F. Dong, “Experimental study of rectangular channel with modified rectangular longitudinal vortex generators,” Int J Heat Mass Transf, vol. 53, no. 15–16, pp.3023–3029, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.03.026.
  • E. R. Meinders and K. Hanjalic, “Experimental study of the convective heat transfer form in-line and staggered configurations of two wall-mounted cubes,” Int J Heat Mass Transf, vol. 45, no. 3, pp.465–482, 2002. DOI: 10.1016/S0017-9310(01)00180-6.
  • D. Lorenzini-Gutierrez, A. Hernandez-Guerrero, J. L. Luviano-Ortiz, and J. C. Leon-Conejo, “Numerical and experimental analysis of heat transfer enhancement in a grooved channel with curved flow deflectors,” Appl. Therm. Eng., vol. 75, pp. 800–808, 2015. DOI: 10.1016/j.applthermaleng.2014.10.002.
  • S. Bhattacharyya, A. I. Bashir, K. Dey, and R. Sarkar, “Effect of novel short-length wavy-tape turbulators on fluid flow and heat transfer: experimental study,” Exp. Heat Transfer, vol. 33, no. 4, pp.335–354, 2020. DOI: 10.1080/08916152.2019.1639847.
  • X. L. Tian, et al., “Effects of fin pitch and tube diameter on the air-side performance of tube bank fin heat exchanger with the fins punched plane and curved rectangular vortex generators,” Exp. Heat Transfer, vol. 31, no. 4, pp.297–316, 2018. DOI: 10.1080/08916152.2017.1410503.
  • K. W. Song, et al., “Effect of geometric size of curved delta winglet vortex generators and tube pitch on heat transfer characteristics of fin-tube heat exchanger,” Experimental Thermal and Fluid Science, vol. 82, pp. 8–18, 2017. DOI: 10.1016/j.expthermflusci.2016.11.002.
  • K. W. Song, T. Tagaw, Z. H. Chen, and Q. Zhang, “Heat transfer characteristics of concave and convex curved vortex generators in the channel of plate heat exchanger under laminar flow,” International Journal of Thermal Sciences, vol. 137, pp. 215–228, 2019. DOI: 10.1016/j.ijthermalsci.2018.11.002.
  • Y. Rao, C. Wan, Y. Xu, and S. Zang, “Spatially-resolved heat transfer characteristics in channels with pin fin and pin fin-dimple arrays,” International Journal of Thermal Sciences, vol. 50, pp. 2277–2289, 2011.
  • A. Akcayoglu and C. Nazli, “A comprehensive numerical study on thermohydraulic performance of fluid flow in triangular ducts with delta-winglet vortex generators,” Heat Transfer Engineering, vol. 39, no. 2, pp.107–119, 2018. DOI: 10.1080/01457632.2017.1288046.
  • C. Luo, K. Song, T. Tagawa, X. Wu, and L. Wang, “Thermal performance of a zig-zag channel formed by two wavy fins mounted with vortex generators,” International Journal of Thermal Sciences, vol. 153, pp. 1–13, 2020. DOI: 10.1016/j.ijthermalsci.2020.106361.
  • S. Hussain, J. Liu, L. Wang, and B. Sunden, “Suppression of endwall heat transfer in the junction region with a symmetric airfoil by a vortex generator pair,” International Journal of Thermal Sciences, vol. 136, pp. 135–147, 2019.
  • H. Xiao, Z. Dong, Z. Liu, and W. Liu, “Heat transfer performance and flow characteristics of solar air heaters with inclined trapezoidal vortex generators,” Appl. Therm. Eng., vol. 179, pp. 1–17, 2020. DOI: 10.1016/j.applthermaleng.2020.115484.
  • L. P. B. M. Janssen and M. M. C. G., . Warmoeskerken, “Transport Phenomena-data Companion,” DUM, Delft, pp. 2, 1991.
  • D. Lytle and B. W. Webb, “Air jet impingement heat transfer at low nozzle plate spacings,” Int J Heat Mass Transf, vol. 37, no. 12, pp.1687–1697, 1994. DOI: 10.1016/0017-9310(94)90059-0.
  • S. J. Kline and F. A. McClintock, “Describing uncertainties in single-sample experiments,” Mechanical Engineering, vol. 73, pp. 3–8, 1953.
  • R. N. Kackar, “Off-line quality control, parameter design and the Taguchi methods,” Journal of Quality Technology, vol. 17, no. 4, pp.176–188, 1985. DOI: 10.1080/00224065.1985.11978964.
  • P. J. Ross, Taguchi Techniques for Quality Engineering. McGraw-Hill, Singapore, 1989.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.