Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 35, 2022 - Issue 5
335
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Nucleate pool boiling heat transfer above laser machining heating surfaces with different micro-cavity geometric shape for water-aluminum oxide nanofluid

, &
Pages 688-707 | Received 14 Jan 2021, Accepted 16 Jun 2021, Published online: 30 Jun 2021

References

  • G. Liang and I. Mudawar, “Review of pool boiling enhancement with additives and nanofluids,” Int. J. Heat Mass Transf., vol. 124, pp. 423–453, 2018. DOI:10.1016/j.ijheatmasstransfer.2018.03.046.
  • D. E. Kim, D. I. Yu, D. W. Jerng, M. H. Kim, and H. S. Ahn, “Review of boiling heat transfer enhancement on micro/nanostructured surfaces,” Exp. Therm. Fluid Sci., vol. 66, pp. 173–196, 2015. DOI:10.1016/j.expthermflusci.2015.03.023.
  • S. G. Kandlikar, “Enhanced macroconvection mechanism with separate liquid-vapor pathways to improve pool boiling performance,” J Heat Transfer, vol. 139, pp. 1–11, 2017. DOI:10.1115/1.4035247.
  • T. J. Hendricks, S. Krishnan, C. Choi, C. H. Chang, and B. Paul, “Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper,” Int. J. Heat Mass Transf., vol. 53, no. 15–16, pp. 3357–3365, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.02.025.
  • W. Li, R. Dai, M. Zeng, and Q. Wang, “Review of two types of surface modification on pool boiling enhancement: passive and active,” Renew. Sustain. Energy Rev., vol. 130, pp. 109926, 2020. DOI:10.1016/j.rser.2020.109926.
  • A. Mehralizadeh, S. Reza Shabanian, and G. Bakeri, “Effect of modified surfaces on bubble dynamics and pool boiling heat transfer enhancement: a review,” Thermal Science and Engineering Progress, vol. 15, pp. 100451, 2020. DOI:10.1016/j.tsep.2019.100451.
  • E. Dehghani-Ashkezari and M. R. Salimpour, “Effect of groove geometry on pool boiling heat transfer of water-titanium oxide nanofluid, heat mass transf,” Und Stoffuebertragung, vol. 54, pp. 3473–3481, 2018. DOI:10.1007/s00231-018-2388-1.
  • M. M. Sarafraz and F. Hormozi, “Experimental investigation on the pool boiling heat transfer to aqueous multi-walled carbon nanotube nanofluids on the micro-finned surfaces,” Int. J. Therm. Sci., vol. 53, pp. 255–266, 2010. DOI:10.1016/j.ijheatmasstransfer.2010.02.025.
  • H. Moghadasi, H. Saffari, and N. Malekian, “Experimental and semi-analytical investigation of heat transfer in nucleate pool boiling by considering surface structuring methods, Exp,” Heat Transf, vol. 00, pp. 1–21, 2020. DOI:10.1080/08916152.2020.1743385.
  • A. K. Das, P. K. Das, and P. Saha, “Performance of different structured surfaces in nucleate pool boiling,” Appl. Therm. Eng., vol. 29, no. 17–18, pp. 3643–3653, 2009. DOI: 10.1016/j.applthermaleng.2009.06.020.
  • J. S. Mehta and S. G. Kandlikar, “Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure, Part I: experimental results for circumferential rectangular open microchannels,” International Journal of Heat and Mass Transfer, vol. 64, pp. 1205–1215, 2013. DOI:10.1016/j.ijheatmasstransfer.2013.03.087.
  • K.-H. Chu, R. Enright, and E. N. Wang, “Structured surfaces for enhanced pool boiling heat transfer,” Applied Physics Letters, vol. 100, no. 24, pp. 241603, 2012. DOI: 10.1063/1.4724190.
  • M. Zimmermann, M. Heinz, A. Sielaff, T. Gambaryan-Roisman, and P. Stephan, “Influence of system pressure on pool boiling regimes on a microstructured surface compared to a smooth surface,” Exp Heat Transf, vol. 33, pp. 318–334, 2020. DOI:10.1080/08916152.2019.1635228.
  • D. Deng, J. Feng, Q. Huang, Y. Tang, and Y. Lian, “Pool boiling heat transfer of porous structures with reentrant cavities,” Int. J. Heat Mass Transf., vol. 99, pp. 556–568, 2016. DOI:10.1016/j.ijheatmasstransfer.2016.04.015.
  • S. K. Gupta and R. D. Misra, “An experimental investigation on pool boiling heat transfer enhancement using Cu-Al2O3 nano-composite coating,” Exp. Heat Transf., vol. 32, pp. 133–158, 2019. DOI:10.1080/08916152.2018.1485785.
  • A. Nazari and S. Saedodin, “Critical heat flux enhancement of pool boiling using a porous nanostructured coating, Exp,” Heat Transf, vol. 30, pp. 316–327, 2017. DOI:10.1080/08916152.2016.1249806.
  • T. M. Mansour and R. A. Khalaf-Allah, “Theoretical and experimental verification for determining pool boiling heat transfer coefficient using fuzzy logic,” Heat Mass Transf, vol. 56, pp. 3059–3070, 2020. DOI:10.1007/s00231-020-02917-7.
  • E. I. Eid, R. A. Khalaf-Allah, S. H. Taher, and A. A. Al-Nagdy, “An experimental investigation of the effect of the addition of nano Aluminum oxide on pool boiling of refrigerant 134A,” Heat Mass Transf, vol. 53, pp. 2597–2607, 2017. DOI:10.1007/s00231-017-2010-y.
  • E. I. Eid, R. A. Khalaf-Allah, and M. Tolan, “Enhancement of pool boiling characteristics by an addition of nano Aluminum oxide to R-141b over a rough horizontal steel circular heater,” Int. J. Refrig., vol. 98, pp. 311–322, 2019. DOI:10.1016/j.ijrefrig.2018.11.006.
  • A. M. Gheitaghy, A. Samimi, and H. Saffari, “Surface structuring with inclined minichannels for pool boiling improvement,” Appl. Therm. Eng., vol. 126, pp. 892–902, 2017. DOI:10.1016/j.applthermaleng.2017.07.200.
  • G. Liang, Y. Chen, H. Yang, D. Li, and S. Shen, “Nucleate boiling heat transfer and critical heat flux (CHF) from micro-pit surfaces,” Int. J. Heat Mass Transf., vol. 152, pp. 119510, 2020. DOI:10.1016/j.ijheatmasstransfer.2020.119510.
  • A. Walunj and A. Sathyabhama, “Comparative study of pool boiling heat transfer from various microchannel geometries,” Appl. Therm. Eng., vol. 128, pp. 672–683, 2018. DOI:10.1016/j.applthermaleng.2017.08.157.
  • Y. Sun, et al., “Pool boiling performance and bubble dynamics on microgrooved surfaces with reentrant cavities,” Appl. Therm. Eng., vol. 125, pp. 432–442, 2017. DOI:10.1016/j.applthermaleng.2017.07.044.
  • G. Liang and I. Mudawar, “Review of pool boiling enhancement by surface modification,” Int. J. Heat Mass Transf., vol. 128, pp. 892–933, 2019. DOI:10.1016/j.ijheatmasstransfer.2018.09.026.
  • L. M. Vilhena, et al., “Surface texturing by pulsed Nd: yAGlaser,” Tribol Int, vol. 42, pp. 1496–1504, 2009. DOI:10.1016/j.triboint.2009.06.003.
  • B. K. Nayak and M. C. Gupta, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin, Opt,” Lasers Eng, vol. 48, pp. 966–973, 2010. DOI:10.1016/j.optlaseng.2010.05.009.
  • A. Karthikeyan, S. Coulombe, and A. M. Kietzig, “Boiling heat transfer enhancement with stable nanofluids and laser textured copper surfaces,” Int. J. Heat Mass Transf., vol. 126, pp. 287–296, 2018. DOI:10.1016/j.ijheatmasstransfer.2018.05.118.
  • V. V. Nirgude and S. K. Sahu, “Enhancement in nucleate pool boiling heat transfer on nano-second laser processed copper surfaces, Exp,” Heat Transf, vol. 32, pp. 566–583, 2019. DOI:10.1080/08916152.2018.1559262.
  • V. V. Nirgude and S. K. Sahu, “Heat transfer enhancement in nucleate pool boiling using laser processed surfaces: effect of laser wavelength and power variation, Thermochim,” Acta, vol. 694, pp. 178788, 2020. DOI:10.1016/j.tca.2020.178788.
  • C. M. Kruse, et al., “Enhanced pool-boiling heat transfer and critical heat flux on femtosecond laser processed stainless steel surfaces,” Int. J. Heat Mass Transf., vol. 82, pp. 109–116, 2015. DOI:10.1016/j.ijheatmasstransfer.2014.11.023.
  • S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids, J,” Heat Transfer, vol. 125, pp. 567–574, 2003. DOI:10.1115/1.1571080.
  • P. Sharma, I. H. Baek, T. Cho, S. Park, and K. B. Lee, “Enhancement of thermal conductivity of ethylene glycol based silver nanofluids,” Powder Technol, vol. 208, pp. 7–19, 2011. DOI:10.1016/j.powtec.2010.11.016.
  • M. S. Kamel and F. Lezsovits, “Enhancement of pool boiling heat transfer performance using dilute cerium oxide/water nanofluid: an experimental investigation,” Int. Commun. Heat Mass Transf., vol. 114, pp. 104587, 2020. DOI:10.1016/j.icheatmasstransfer.2020.104587.
  • J. Ham, H. Kim, Y. Shin, and H. Cho, “Experimental investigation of pool boiling characteristics in Al2O3 nanofluid according to surface roughness and concentration,” Int. J. Therm. Sci., vol. 114, pp. 86–97, 2017. DOI:10.1016/j.ijthermalsci.2016.12.009.
  • J. M. Kshirsagar and R. Shrivastava, “Experimental investigation of nucleate pool boiling characteristics of high concentrated alumina/water nanofluids, Heat Mass Transf,” Und Stoffuebertragung, vol. 54, pp. 1779–1790, 2018. DOI:10.1007/s00231-017-2253-7.
  • Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” Int. J. Heat Fluid Flow, vol. 21, no. 1, pp. 58–64, Feb. 2000, doi: 10.1016/S0142-727X(99)00067-3.
  • R. L. Hamilton, “Thermal conductivity of heterogeneous two-component systems,” Ind. Eng. Chem. Fundam., vol. 1, pp. 187–191, 1962. DOI:10.1021/i160003a005.
  • M. R. Raveshi, A. Keshavarz, M. S. Mojarrad, and S. Amiri, “Experimental investigation of pool boiling heat transfer enhancement of alumina-water-ethylene glycol nanofluids,” Exp. Therm. Fluid Sci., vol. 44, pp. 805–814, 2013. DOI:10.1016/j.expthermflusci.2012.09.025.
  • F. M. S. Kline, “Describing uncertainties in single- sample experiments,” Mech. Eng., vol. 75, pp. 3–8, 1953.
  • W. M. Rohsenow, “A method of correlating heat transfer data for surface boiling of liquids,” Trans. ASME., vol. 74, pp. 969–976, 1952.
  • D. Gorenflo, “Pool Boiling, VDI Heat Atlas, VDI-Verlag, Dusseldorf,” Ger, 1993.
  • I. L. Pioro, “Experimental evaluation of constants for the Rohsenow pool boiling correlation,” Int. J. Heat Mass Transf., vol. 42, 1998. DOI: 10.1016/S0017-9310(98)00294-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.