Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 35, 2022 - Issue 6
178
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Influence of pin-fin height and diameter on flow and cooling characteristics of three-layer porous laminates: An experimental study

, , &
Pages 884-899 | Received 04 May 2021, Accepted 19 Aug 2021, Published online: 01 Sep 2021

References

  • X. L. Tian, et al., “Effects of fin pitch and tube diameter on the air-side performance of tube bank fin heat exchanger with the fins punched plane and curved rectangular vortex generators,” Experimental Heat Trans, vol. 31, no. 4–6, pp.297–316, 2018. DOI: 10.1080/08916152.2017.1410503.
  • K. A. Morteza and S. Mortazavi, “Combined effects of holes and winglets on chevron plate-fins to enhance the performance of a plate-fin heat exchanger working with nanofluid,” Experimental Heat Trans, vol. 32, no. 6, pp.1–16, 2019. DOI: 10.1080/08916152.2019.1569176.
  • J. Wang, Z. W. Hu, C. Du, L. Tian, and J. Baleta, “Numerical study of effusion cooling of a gas turbine combustor liner,” Fuel, vol. 294, pp. 120578, 2021. DOI: 10.1016/j.fuel.2021.120578.
  • M. Nanjundappa, “Optimum thermo-hydraulic performance of solar air heater provided with cubical roughness on the absorber surface,” Experimental Heat Trans, vol. 33, pp. 1–14, 2019.
  • K. Cheng, S. Liang, and X. Huai, “Effects of chemical heat sink generated by an oxalic acid cooling stream on film-cooling effectiveness,” Experimental Heat Trans, vol. 29, no. 1–3, pp.113–123, 2016. DOI: 10.1080/08916152.2014.973972.
  • G. V. Kewalramani, G. Hedau, and S. K., . A. Saha, “A:Study of laminar single phase frictional factor and Nusselt number in In-line micro pin-fin heat sink for electronic cooling applications,” Int J Heat Mass Transf, vol. 138, pp. 796–808, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.118.
  • Y. J. Kim and S. M. Kim, “Influence of shaped injection holes on turbine blade leading edge film cooling,” Int. J. Heat Mass Transf., vol. 47, no. 2, pp.245–256, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.07.008.
  • G. E. Andrews, A. A. Asere, C. I. Hussain, M. C. Mkpadi, and A. Nazari, “Impingement/Effusion cooling: overall wall heat transfer[J],” ASME Paper No. 88-GT-290. 1988.
  • T. P. Auyeung, R. Cohn, E. Coy, S. A. Danezyk, and C. Papesh, “Experimental and numerical analysis of transpiration cooling of a rocket engine using lamilloy plates,” Air Force Res. Lab., AFRL-PR-ED-TP-2005-450, pp. 1–13. 2005.
  • N. Bianco, M. Iasiello, G. M. Mauro, and L. Pagano, “Multi-objective optimization of finned metal foam heat sinks: tradeoff between heat transfer and pressure drop,” Appl. Therm. Eng., vol. 182, pp. 116058, 2021. DOI: 10.1016/j.applthermaleng.2020.116058.
  • Z. Tao, D. Lu, S. T. Ding, and G. Q. Xu, “Numerical study on the influences of pin-fin diameter on the flow resistance and heat transfer of leaning vent hole lamilloy,” J. Aerospace Power, vol. 22, pp. 540–546, 2007.
  • M. K. Chyu, S. C. Siw, and H. K. Moon, Effects of Height-to-Diameter Ratio of Pin Element on Heat Transfer from Staggered Pin-Fin Arrays//ASME Turbo Expo 2009: Power for Land, Sea, and Air. American Society of Mechanical Engineers. pp. 705–713, 2009.
  • S. S. Xue, Numerical Simulation and Experimental Study on the Flow and Cooling Characteristics of the Effusion Cooling Board and Lamilloy Structure. NanJing: Nanjing University of Aeronautics and Astronautics, 2016.
  • L. Luo, C. Wang, C. Wang, B. Sundén, and S. Wang, “Effects of pin fin configurations on heat transfer and friction factor in an improved Lamilloy cooling structure,” Heat Transf. Res., vol. 48, no. 7, pp.657–679, 2017. DOI: 10.1615/HeatTransRes.2016013575.
  • J. H. Wang, X. J. Lv, Q. D. Liu, and X. Y. Wu, “An experimental investigation on cooling performance of laminated configuration using infrared thermal image technique,” ASME Paper No. GT2009-59838. 2009.
  • J. Pu, W. Wang, J. H. Wang, W. L. Wu, and M., . Wang, “Experimental study of free-stream turbulence intensity effect on overall cooling performances and solid thermal deformations of vane laminated end-walls with various internal pin-fin configurations,” Appl. Therm. Eng., vol. 173, pp. 115232, 2020. DOI: 10.1016/j.applthermaleng.2020.115232.
  • A. Mensch and K. A. Thole, “Conjugate heat transfer analysis of the effects of impingement channel height for a turbine blade endwall,” .Int. J. Heat Mass Transf., vol. 82, pp. 66–77, 2015.
  • C. F. Favaretto and K. Funazaki, “Application of genetic algorithms to design of an internal turbine cooling system,” ASME Paper No.2003-38408. 2003.
  • K. Funazaki and K. Hachiya, “Systematic numerical studies on heat transfer and aerodynamic characteristics of impingement cooling devices combined with pins,” ASME paper No.GT 2003-38256. 2003.
  • B. A. Brigham and G. J. VanFossen, “Length to diameter ratio and row number effects in short pin fin heat transfer,” J. Eng. Power, vol. 106, pp. 268–274, 1984.
  • R. J. Goldstein, M. Y. Jabbari, and S. B. Chen, “Convective mass transfer and pressure loss characteristics of staggered short pin-fin arrays,” Int. J. Heat Mass Transf., vol. 37, pp. 149–160, 1994.
  • X. H. Yu, D. L. Quan, S. L. Liu, D. C. Xu, and Z. G. Hu, “Investigation of the internal heat transfer characteristics of lamilloy,” Acta Aeronaut. Astronaut. Sin, vol. 24, pp. 405–410, 2003.
  • N. F. Zhao, X. M. Tan, Y. F. Li, R. L. Fang, and H. S. Xu, “Research on configurations of high-density laminate porous plates,” J. Propul. Technol., vol. 35, pp. 1517–1522, 2014.
  • J. H. Li, D. L. Quan, S. L. Liu, and H. R. Zhu, “The effects of geometry parameters on the cooling in performance and aerodynamic characteristic of lamilloy,” Machinery Design Manuf, vol. 09, pp. 74–76, 2005.
  • D. A. Nealy and S. B. Reider, “Evaluation of laminated porous wall materials for combustor liner cooling,” J. Eng. Gas Turbines and Power, vol. 102, pp. 268–276, 1980.
  • J. D. Wear, A. M. Trout, J. M. Smith, and R. E. Jones, “Design and preliminary results of a semitranspiration cooled (lamilloy) liner for a high-pressure, high-temperature combustor,” AIAA Paper78-997. 1978.
  • X. C. Hou, Combustion Technology of High Performance Aviation Gas Turbine [M]. National Defense Industry Press, Beijing, 2002.
  • J. Zhang, H. Z. Han, Z. R. Li, and H. G. Zhong, “Effect of Pin-fin Forms on Flow and Cooling Characteristics of Three-layer Porous Laminate,” Appl. Therm. Eng., vol. 194, pp. 117084, 2021.
  • C. Zhang, Q. Xu, M. Zhao, Y. Lin, and G. Lin, Effect of Impingement/Effusion Hole-Area Ratio on Discharge Coefficients of Double Cooling Wall// Asme Turbo Expo. Power for Land, Sea, & Air, New York, USA, 2006.
  • A. Dabagh, G. E. Andrews, R. Abdul Husain, C. I. Husain, and A. Nazari, “Impingement/-effusion cooling: the influence of the number of impingement holes and pressure loss on the heat transfer coefficient,” J. Turbomachinery, vol. 112, pp. 467–476, 1990.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.