Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 36, 2023 - Issue 2
378
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Experimental and numerical investigation of the thermal performance of impinging synthetic jets with different waveforms

, , &
Pages 121-142 | Received 17 Mar 2021, Accepted 20 Sep 2021, Published online: 30 Sep 2021

References

  • A. M. Jabbal and Y. Yan, “Synthetic jet actuators for heat transfer enhancement-A critical review,” Int. J. Heat Mass Transf., vol. 146, pp. 118815, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118815.
  • P. K. Singh, S. K. Sahu, and P. K. Upadhyay, “Experimental investigation of the thermal behaviour a single-cavity and multiple orifice synthetic jet impingement driven by electromagnetic actuator for electronics cooling,” Exp Heat Transf., pp. 1–27, 2020. DOI: 10.1080/08916152.2020.1825546.
  • P. K. Singh, S. K. Sahu, P. K. Upadhyay, and A. K. Jain, “Experimental investigation on thermal characteristics of hot surface by synthetic jet impingement,” App. Therm. Eng., vol. 165, pp. 114596, 2020. DOI: 10.1016/j.applthermaleng.2019.114596.
  • M. B. Gillespie, W. Z. Black, C. Rinehart, and A. Glezer, “Local convective heat transfer from a constant heat flux flat plate cooled by synthetic air jet,” J. Heat Transf., vol. 128, no. 10, pp.990–1000, 2006. DOI: 10.1115/1.2345423.
  • D. Sykesand A. Carpenter, “Experimental investigation of multiple synthetic jets on heat transfer and pressure loss in minichannels,” Exp. Heat Transf., vol. 29, no. 4, pp. 500–519, 2016. DOI: 10.1080/08916152.2015.1036179.
  • B. L. Smith and A. Glezer, “The formation and evolution of synthetic jets,” Phy Fluids, vol. 10, no. 9, pp.2281–2297, 1998. DOI: 10.1063/1.869828.
  • M. D. Limiya, R. P. Vedula, and S. V. Prabhu, “Influence of the shape of the orifice on the local heat transfer distribution of a flat plate impinged by under-expanded sonic jet,” Exp. Heat Transf., vol. 27:5, no. 5, pp.403–427, 2014. DOI: 10.1080/08916152.2013.782378.
  • M. Modak, A. K. Sharma, and aS. K. Sahu, “An experimental investigation on heat transfer enhancement in circular jet impingement on hot surface by using Al2O3/water nano-fluids and aqueous high alcohol surfactant solutions,” Exp. Heat Transf., vol. 32, no. 4, pp. 275–296, 2018. DOI: 10.1080/08916152.2017.1381655.
  • H. Deng, J. Wang, L. Bai, and J. Zhu, “Heat transfer characteristics in a rotating wedge-shaped ribbed edge with impingement jet,” Exp. Heat Transf., 2020. DOI: 10.1080/08916152.2020.1713256.
  • S. Rakhsha, M. R. Zargarabadi,and S. Saedodin, “Experimental and numerical study of flow and heat transfer from a pulsed jet impinging on a pinned surface,” Exp. Heat Transf., 2020. DOI: 10.1080/08916152.2020.1755388.
  • S. D. Barewar and S. S. Chougule, “Heat transfer characteristics and boiling heat transfer performance of novel Ag/Zno based hybrid nanofluid using free surface jet impingement,” Exp. Heat Transf., 2020. DOI: 10.1080/08916152.2020.1792587.
  • O. Zeitoun, M. Ali, and H. Al-Ansary, “The effect of particle concentration on cooling of a circular horizontal surface using nanofluid jets,” Nano. Micro. Thermo. Eng., vol. 17, no. 2, pp. 154–171, 2013. DOI: 10.1080/15567265.2012.749963.
  • T. Wijayanta and M. M. Aziz, “Heat transfer augumentation of internal flow using twisted tape insert in turbulent flow,” Heat Transf. Eng., vol. 41, no. 14, pp. 1288–1300, 2020. DOI: 10.1080/01457632.2019.1637149.
  • K. L. Liaw, J. C. Kurnia, and A. P. Sasmito, “Turbulent convective heat transfer in helical tube tape insert,” Int. J. Heat Mass Transf., vol. 169, pp. 12098, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.120918.
  • P. Gil, E. Smyk, R. Gałek, and Ł. Przeszłowski, “Thermal flow and acoustic characteristics of the heat sink integrated inside the synthetic jet actuator cavity,” Int. J. Therm. Sci., vol. 170, pp. 107171, 2021. DOI: 10.1016/j.ijthermalsci.2021.107171.
  • A. Pavlova, M. Amitay, “Electronic cooling using synthetic jet impingement,” J. Heat Transf., vol. 128, no. 9, pp.897–907, 2006. DOI: 10.1115/1.2241889.
  • M. Chaudhari, B. Puranik, and A. Agrawal, “Heat transfer characteristics of synthetic jet impingement cooling,” Int. J. Heat Mass Transf., vol. 53, no. 5–6, pp. 1057–1069, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.11.005.
  • M. Hatami, F. B. Tehrani, A. Abouata, and A. M. Ahmar, “Investigation of geometry and dimensionless parameters effect on the flow field and heat transfer of impinging synthetic jets,” Int. J. Therm. Sci., vol. 127, pp. 41–52, 2018. DOI: 10.1016/j.ijthermalsci.2018.01.011.
  • L. Smith and G. W. Swift, “A comparison between synthetic jets and continuous jets,” Exp. Fluids, vol. 34, no. 4, pp.467–472, 2003. DOI: 10.1007/s00348-002-0577-6.
  • H. Herwig and G. Middelberg, “The physics of unsteady jet impingement and its heat transfer performance,” Acta. Mech., vol. 201, no. 1–4, pp.171–184, 2008. DOI: 10.1007/s00707-008-0080-0.
  • L. Geng, C. Zheng, and J. Zhou, “Heat transfer characteristics of impinging jets: the influence of unsteadiness with different waveforms,” Int. Comm. Heat Mass Transf., vol. 66, pp. 105–113, 2015. DOI: 10.1016/j.icheatmasstransfer.2015.05.017.
  • M. Chaudhari, B. Puranik, and A. Agrawal, “Effect of orifice shape in synthetic jet based impingement cooling,” Exp. Therm. Fluid Sci., vol. 34, no. 2, pp.246–256, 2010. DOI: 10.1016/j.expthermflusci.2009.11.001.
  • Y. Zhang, P. Li, and Y. Xie, “Numerical investigation of the heat transfer characteristics of the impinging synthetic jets with different waveforms,” Int. J. Heat. Mass. Transf., vol. 125, pp. 1017–1027, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.120.
  • Y. Lin, C. J. Bai, and F. B. Hsiao, “An investigation of fundamental characteristics of excited synthetic jet actuator under cavity and diaphragm resonance,” Proce. Eng., vol. 79, pp. 35–44, 2014. DOI: 10.1016/j.proeng.2014.06.306.
  • M. K. Agrawal and S. K. Sahu, “An experimental study on the rewetting of a hot vertical surface by circular water jet impingement,” Exp. Heat Transf., vol. 29, no. 2, pp. 151–172, 2015. DOI: 10.1080/08916152.2014.973973.
  • X. M. Tan, J. Z. Zhang, S. Yong, and G. N. Xie, “An experimental investigation on comparison of synthetic and continuous jets impingement heat transfer,” Int. J. Heat Mass Transf., vol. 90, pp. 227–238, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.06.065.
  • M. Ikhlaq, Y. M. Al-Abdeli, and M. Khiadani, “Methodology for spatially resolved transient convection processes using infrared thermography,” Exp. Heat Transf., 2020. DOI: 10.1080/08916152.2020.1749189.
  • S. C. Godi, S. Abraham, A. Pattamatta, and C. Balaji, “Evaluation of candidate strategies for the estimation of local heat transfer coefficient from wall jets,” Exp. Heat Transf., vol. 33, no. 1, pp. 40–63, 2020. DOI: 10.1080/08916152.2019.1570983.
  • M. J. Rau and S. V. Garimella, “Local two-phase heat transfer from array of confined and submerged impinging jets,” Int. J. Heat Mass Transf., vol. 67, pp. 487–498, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.08.041.
  • A. Bejan, Entropy Generation through Heat and Fluid Flow, New York: Wiley, 1982.
  • D. Lytle, and W. B. Webb, “Air jet impingement heat transfer at low-nozzle plate spacings,” Int. J. Heat Mass Transf., vol. 37, no. 12, pp. 1687–1697, 1994. doi:10.1016/0017-9310(94)90059-0.
  • G. Li, L. Zhu, S. Zhang, W. Guo, and Y. Zheng, “Influence of conduction heat loss on enhancing the heat transfer performance of a square flat plate with constant heat flux by an impinging jet in cross-flows,” Exp. Heat Transf., vol. 32, no. 3, pp.219–238, 2019. DOI: 10.1080/08916152.2018.1494227.
  • T. Astarita, G. Cardone, and G. M. Carlomagno, “Infrared thermography: an optical method in heat transfer and fluid flow visualization,” Optics Lasers Eng., vol. 44, no. 3–4, pp.261–281, 2006. DOI: 10.1016/j.optlaseng.2005.04.006.
  • H. W. Coleman and W. G. Steele, Experimental and Uncertainty Analysis for Engineers. New York: Wiley, 1989.
  • M. Jain, B. Puranik, and A. Agrawal, “A numerical investigation of the effects of cavity and orifice parameters on the characteristics of a synthetic jet flow,” Sens. Act. A: Phy., vol. 165, no. 2, pp.351–366, 2011. DOI: 10.1016/j.sna.2010.11.001.
  • C. A. Palumbo and L. D. Luca, “Comparative study of spectral-element and finite-volume solvers for direct numerical simulation of synthetic jets,” Comp. Fluids, vol. 179, pp. 228–237, 2019. DOI: 10.1016/j.compfluid.2018.11.002.
  • M. M. Soria, J. C. Cajas, I. Rodŕiguez, and C. Moulinec, “Flow topology and heat transfer analysis of slotted and axisymmetric synthetic impinging jet,” Int. J. Therm. Sci., vol. 164, pp. 106847, 2021. DOI: 10.1016/j.ijthermalsci.2021.106847.
  • S. Kimura and A. Bejan, “The heatline visualization of convective heat transfer,” J. Heat Transf., vol. 105, no. 4, pp.916–919, 1982. DOI: 10.1115/1.3245684.
  • D. Singh, B. Premachandran, and S. Kohli, “Experimental and numerical investigation of jet impingement cooling of a circular cylinder,” Int. J. Heat Mass Transf., vol. 60, pp. 672–688, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.01.008.
  • B. E. Launder and N. D. Sandham, Closure Strategies for Turbulent and Transitional Flows. Cambridge: Cambridge Univ Press, 2002.
  • G. Cicca, G. Iuso, “On the near field of an axisymmetric synthetic jet,” Fluid Dyn. Res., vol. 39, no. 9–10, pp.673–693, 2007. DOI: 10.1016/j.fluiddyn.2007.03.002.
  • S. Greco, A. Ianiro, T. Astarita, and G. Gardone, “On the near field of single and twin circular synthetic air jets,” Int. J. Heat Fluid Flow, vol. 44, pp. 41–52, 2013. DOI: 10.1016/j.ijheatfluidflow.2013.03.018.
  • K. Jambunathan, E. Lai, M. A. Mossand, and B. L. Button, “A review of heat transfer data for single circular jet impingement,” Int. J. Heat Fluid Flow, vol. 13, pp. 106–115, 1992.
  • M. R. Farrelly, T. Persoons, and D. B. Murray, “Flow regime characterization of an impinging axisymmetric synthetic jet,” Exp. Therm. Fluid Sci., vol. 47, pp. 241–251, 2013.
  • S. G. Mallinson, G. Hong, and J. A. Rezeis, “Some characteristics of synthetic jets,” AIAA J., vol. 99, pp. 3651, 1999.
  • C. Y. Y. Lee, M. L. Woyciekoski, and J. B. Copetti, “Experimental study of synthetic jets with rectangular orifice for electronic cooling,” Exp. Therm. Fluid Sci., vol. 78, pp. 242–248, 2016.
  • C. S. Greco, G. Paolillo, A. Ianiro, G. Cardone, and L. D. Luca, “Effect of the stroke length and nozzle to plate distance on synthetic jet impingement heat transfer,” Int. J. Heat Mass Transf., vol. 117, pp. 1019–1031, 2018.
  • T. Persoons, A. McGuinn, and D. B. Murray, “A General correlation for the stagnation point nusselt number of an axisymmetric impinging synthetic jet,” Int. J. Heat Mass Transf., vol. 54, pp. 3900–3908, 2011.
  • S. V. Garimella and R. A. Rice, “Confined and submerged liquid jet impingement heat transfer,” J. Heat Transf., vol. 117, pp. 871, 1995.
  • K. Mohanty and A. A. Tawfek, “Heat transfer due to a round jet impinging normal to a flat surface,” Int. J. Heat Mass Transf., vol. 36, pp. 1639–1647, 1993.
  • M. Y. Wen and K. J. Jang, “An impingement cooling on a flat surface by using circular jet with longitudinal swirling strips,” Int. J. Heat Mass Transf., vol. 46, pp. 4657–4667, 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.