Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 36, 2023 - Issue 2
332
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Experimental parametric study of hierarchical micro/nano electrodeposited (six-step) pattern with respect to volcano-shape morphology in pool boiling performance augmentation

, & ORCID Icon
Pages 210-233 | Received 18 Jun 2021, Accepted 05 Oct 2021, Published online: 20 Oct 2021

References

  • S. Xie, M. Jiang, H. Kong, Q. Tong, and J. Zhao, “An experimental investigation on the pool boiling of multi-orientated hierarchical structured surfaces,” Int. J. Heat Mass Transf., vol. 164, pp. 120595, 2021. DOI:10.1016/j.ijheatmasstransfer.2020.120595.
  • H. Moghadasi, N. Malekian, E. Aminian, and H. Saffari, “Thermodynamic analysis of entropy generation due to energy transfer through circular surfaces under pool boiling condition,” J. Therm. Anal. Calorim., 2021. DOI: 10.1007/s10973-021-10561-4.
  • Z. G. Xu, J. Qin, and X. F. Ma, “Experimental and numerical investigation on bubble behaviors and pool boiling heat transfer of semi-modified copper square pillar arrays,” Int. J. Therm. Sci., vol. 160, no. October 2020, 2021. DOI: 10.1016/j.ijthermalsci.2020.106680.
  • H. Moghadasi and H. Saffari, “Experimental study of nucleate pool boiling heat transfer improvement utilizing micro/nanoparticles porous coating on copper surfaces,” Int. J. Mech. Sci., vol. 196, no. January, pp. 106270, 2021. DOI: 10.1016/j.ijmecsci.2021.106270.
  • W. Zhou, X. Hu, L. Mao, and Y. He, “Markedly enhanced pool boiling heat transfer performance on maicropaorous copper surfaces fabricated utilizing a facile wire cutting process,” Appl. Therm. Eng., vol. 165, no. 11, 2020. DOI: 10.1016/j.applthermaleng.2019.114396.
  • W. Li, R. Dai, M. Zeng, and Q. Wang, “Review of two types of surface modification on pool boiling enhancement: passive and active,” Renew. Sustain. Energy Rev., vol. 130, no. May, pp. 109926, 2020. DOI: 10.1016/j.rser.2020.109926.
  • B. Fekadu, R. Khatiravan, and P. Saravanan, “Augmentation of pool boiling heat transfer characteristics using naphtha carbon soot nanoparticles –water based nanofluids,” Exp. Heat Transf., pp. 1–16, 2021. DOI: 10.1080/08916152.2021.1958108.
  • H. Moghadasi, N. Malekian, H. Saffari, A. M. Gheitaghy, and G. Q. Zhang, “Recent advances in the critical heat flux amelioration of pool boiling surfaces using metal oxide nanoparticle deposition,” Energies, vol. 13, no. 15, 2020. DOI: 10.3390/en13154026.
  • A. Mehralizadeh, S. Reza Shabanian, and G. Bakeri, “Effect of modified surfaces on bubble dynamics and pool boiling heat transfer enhancement: a review,” Therm. Sci. Eng. Prog., vol. 15, pp. 100451, 2020. DOI:10.1016/j.tsep.2019.100451.
  • H. Moghadasi, H. Saffari, and N. Malekian, “Experimental and semi-analytical investigation of heat transfer in nucleate pool boiling by considering surface structuring methods,” Exp. Heat Transf., pp. 1–21, 2020. DOI: 10.1080/08916152.2020.1743385.
  • A. Walunj and A. Sathyabhama, “Comparative study of pool boiling heat transfer from various microchannel geometries,” Appl. Therm. Eng., vol. 128, pp. 672–683, 2018. DOI:10.1016/j.applthermaleng.2017.08.157.
  • S. G. Kandlikar, “Controlling bubble motion over heated surface through evaporation momentum force to enhance pool boiling heat transfer,” Appl. Phys. Lett., vol. 102, no. 5, 2013. DOI: 10.1063/1.4791682.
  • A. Heidary, H. Moghadasi, and H. Saffari, “Impact of dimensional characteristics of low-conductive channels on the enhancement of pool boiling: an experimental analysis,” Int. J. Mech. Sci., vol. 209, no. July, pp. 106710, 2021. DOI: 10.1016/j.ijmecsci.2021.106710.
  • C. Zhang, L. Zhang, H. Xu, P. Li, and B. Qian, “Performance of pool boiling with 3D grid structure manufactured by selective laser melting technique,” Int. J. Heat Mass Transf., vol. 128, pp. 570–580, 2019. DOI:10.1016/j.ijheatmasstransfer.2018.09.021.
  • V. V. Nirgude and S. K. Sahu, “Enhancement in nucleate pool boiling heat transfer on nano-second laser processed copper surfaces,” Exp. Heat Transf., vol. 32, no. 6, pp. 566–583, 2019. DOI: 10.1080/08916152.2018.1559262.
  • E. I. Eid, A. A. Al-Nagdy, and R. A. Khalaf-Allah, “Nucleate pool boiling heat transfer above laser machining heating surfaces with different micro-cavity geometric shape for water-aluminum oxide nanofluid,” Exp. Heat Transf., pp. 1–20, 2021. DOI: 10.1080/08916152.2021.1946207.
  • S. G. Kandlikar et al., “Wettability modification to further enhance the pool boiling performance of the micro nano bi-porous copper surface structure,” Int. J. Heat Mass Transf., vol. 136, no. 7, pp. 333–342, 2012. DOI: 10.1016/j.ijheatmasstransfer.2019.03.001.
  • C. M. Patil and S. G. Kandlikar, “Review of the manufacturing techniques for porous surfaces used in enhanced pool boiling,” Heat Transf. Eng., vol. 35, no. 10, pp. 887–902, 2014. DOI: 10.1080/01457632.2014.862141.
  • A. Nazari and S. Saedodin, “Critical heat flux enhancement of pool boiling using a porous nanostructured coating,” Exp. Heat Transf., vol. 30, no. 4, pp. 316–327, 2017. DOI: 10.1080/08916152.2016.1249806.
  • S. K. Gupta and R. D. Misra, “An experimental investigation on pool boiling heat transfer enhancement using Cu-Al 2 O 3 nano-composite coating,” Exp. Heat Transf., vol. 32, no. 2, pp. 133–158, 2019. DOI: 10.1080/08916152.2018.1485785.
  • M. Zimmermann, M. Heinz, A. Sielaff, T. Gambaryan-Roisman, and P. Stephan, “Influence of system pressure on pool boiling regimes on a microstructured surface compared to a smooth surface,” Exp. Heat Transf., vol. 33, no. 4, pp. 318–334, 2020. DOI: 10.1080/08916152.2019.1635228.
  • R. P. Rioux, E. C. Nolan, and C. H. Li, “A systematic study of pool boiling heat transfer on structured porous surfaces: from nanoscale through microscale to macroscale,” AIP Adv., vol. 4, no. 11, pp. 0–17, 2014. DOI: 10.1063/1.4902343.
  • S. Sarangi, J. A. Weibel, and S. V. Garimella, “Quantitative evaluation of the dependence of pool boiling heat transfer enhancement on sintered particle coating characteristics,” J. Heat Transfer, vol. 139, no. 2, pp. 1–13, 2017. DOI: 10.1115/1.4034901.
  • G. H. Seo, G. Jeun, and S. J. Kim, “Enhanced pool boiling critical heat flux with a FeCrAl layer fabricated by DC sputtering,” Int. J. Heat Mass Transf., vol. 102, pp. 1293–1307, 2016. DOI:10.1016/j.ijheatmasstransfer.2016.06.077.
  • H. H. Son, G. H. Seo, U. Jeong, D. Y. Shin, and S. J. Kim, “Capillary wicking effect of a Cr-sputtered superhydrophilic surface on enhancement of pool boiling critical heat flux,” Int. J. Heat Mass Transf., vol. 113, pp. 115–128, 2017. DOI:10.1016/j.ijheatmasstransfer.2017.05.055.
  • H. Moghadasi, H. Fathalizadeh, A. Mehdikhani, and H. Saffari, “Surface modification utilizing photolithography process for pool boiling enhancement: an experimental study,” Heat Transf. Eng., pp. 1–16, May. 2021. DOI: 10.1080/01457632.2021.1932037.
  • S. Shin, B. Seok Kim, G. Choi, H. Lee, and H. Hee Cho, “Double-templated electrodeposition: simple fabrication of micro-nano hybrid structure by electrodeposition for efficient boiling heat transfer,” Appl. Phys. Lett., vol. 101, no. 25, 2012. DOI: 10.1063/1.4772539.
  • A. Zou and S. C. Maroo, “Critical height of micro/nano structures for pool boiling heat transfer enhancement,” Appl. Phys. Lett., vol. 103, no. 22, 2013. DOI: 10.1063/1.4833543.
  • C. M. Patil, K. S. V. Santhanam, and S. G. Kandlikar, “Development of a two-step electrodeposition process for enhancing pool boiling,” Int. J. Heat Mass Transf., vol. 79, pp. 989–1001, 2014. doi:10.1016/j.ijheatmasstransfer.2014.08.062
  • J. Gao, L. S. Lu, J. W. Sun, X. K. Liu, and B. Tang, “Enhanced boiling performance of a nanoporous copper surface by electrodeposition and heat treatment,” Heat Mass Transf. Und Stoffuebertragung, vol. 53, no. 3, pp. 947–958, 2017. DOI: 10.1007/s00231-016-1868-4.
  • A. M. Gheitaghy, H. Saffari, D. Ghasimi, and A. Ghasemi, “Effect of electrolyte temperature on porous electrodeposited copper for pool boiling enhancement,” Appl. Therm. Eng., vol. 113, pp. 1097–1106, 2017. DOI:10.1016/j.applthermaleng.2016.11.106.
  • A. M. Gheitaghy, H. Saffari, and G. Q. Zhang, “Effect of nanostructured microporous surfaces on pool boiling augmentation,” Heat Transf. Eng., vol. 7632, pp. 1–10, 2018. DOI:10.1080/01457632.2018.1442310.
  • S. K. Gupta and R. D. Misra, “Development of micro/nanostructured-Cu-TiO2-nanocomposite surfaces to improve pool boiling heat transfer performance,” Heat Mass Transf. Und Stoffuebertragung, vol. 56, no. 8, pp. 2529–2544, 2020. DOI: 10.1007/s00231-020-02878-x.
  • A. M. Gheitaghy, H. Saffari, and M. Mohebbi, “Investigation pool boiling heat transfer in U-shaped mesochannel with electrodeposited porous coating,” Exp. Therm. Fluid Sci., vol. 76, pp. 87–97, 2016. DOI:10.1016/j.expthermflusci.2016.03.011.
  • A. M. Rishi, A. Gupta, and S. G. Kandlikar, “Improving aging performance of electrodeposited copper coatings during pool boiling,” Appl. Therm. Eng., vol. 140, pp. 406–414, 2018. DOI:10.1016/j.applthermaleng.2018.05.061.
  • A. M. Rishi, S. G. Kandlikar, and A. Gupta, “Improved wettability of graphene nanoplatelets (GNP)/copper porous coatings for dramatic improvements in pool boiling heat transfer,” Int. J. Heat Mass Transf., vol. 132, pp. 462–472, 2019. DOI:10.1016/j.ijheatmasstransfer.2018.11.169.
  • C. M. Patil and S. G. Kandlikar, “Pool boiling enhancement through microporous coatings selectively electrodeposited on fin tops of open microchannels,” Int. J. Heat Mass Transf., vol. 79, pp. 816–828, 2014. DOI:10.1016/j.ijheatmasstransfer.2014.08.063.
  • H. Noh et al., “Effective and uniform cooling on a porous micro-structured surface with visualization of liquid/vapor interface,” Int. J. Heat Mass Transf., vol. 128, pp. 1114–1124, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.086.
  • Z. Lei, B. Liu, P. Xu, Y. Zhang, and J. Wei, “The pool boiling heat transfer and critical vapor column coalescence mechanism of block-divided microstructured surfaces,” Int. J. Heat Mass Transf., vol. 150, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119362.
  • A. Mehdikhani, H. Moghadasi, and H. Saffari, “An experimental investigation of pool boiling augmentation using four-step electrodeposited micro/nanostructured porous surface in distilled water,” Int. J. Mech. Sci., vol. 187, pp. 105924, 2020. DOI:10.1016/j.ijmecsci.2020.105924.
  • H. R. Talesh Bahrami, B. Ahmadi, and H. Saffari, “Optimal condition for fabricating superhydrophobic copper surfaces with controlled oxidation and modification processes,” Mater. Lett., vol. 189, no. November 2016, pp. 62–65, 2017. DOI: 10.1016/j.matlet.2016.11.076.
  • E. Akbari, A. M. Gheitaghy, H. Saffari, and S. M. Hosseinalipour, “Effect of silver nanoparticle deposition in re-entrant inclined minichannel on bubble dynamics for pool boiling enhancement,” Exp. Therm. Fluid Sci., vol. 82, pp. 390–401, 2017. DOI:10.1016/j.expthermflusci.2016.11.037.
  • A. M. Gheitaghy, A. Samimi, and H. Saffari, “Surface structuring with inclined minichannels for pool boiling improvement,” Appl. Therm. Eng., vol. 126, pp. 892–902, 2017. DOI:10.1016/j.applthermaleng.2017.07.200.
  • H. Saffari, H. Fathalizadeh, H. Moghadasi, S. Alipour, and S. M. Hosseinalipour, “Experimental study of pool boiling enhancement for surface structuring with inclined intersected mesochannels using WEDM method on copper surfaces,” J. Therm. Anal. Calorim., vol. 1, 2019. DOI: 10.1007/s10973-019-08601-1.
  • W. M. Rohsenow, A Method of Correlating Heat Transfer Data for Surface Boil- Ing of Liquids. Cambridge, MA: MIT Div. Ind. Cooporation, 1951.
  • S. J. Kline and F. A. McClintock, “Describing uncertainties in single sample experiments,” Mech. Eng, vol. 75, no. 3, pp. 3–8, 1953. DOI: 10.1111/jcmm.13453.
  • J. H. Kim and T. W. Simon, “Journal of heat transfer policy on reporting uncertainties in experimental measurements and results,” J. Heat Transfer, vol. 115, no. 1, pp. 5–6, 1993. DOI: 10.1115/1.2910670.
  • C. Young Lee, M. M. Hossain Bhuiya, and K. J. Kim, “Pool boiling heat transfer with nano-porous surface,” Int. J. Heat Mass Transf., vol. 53, no. 19–20, pp. 4274–4279, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.05.054.
  • M. M. Rahman, E. Ölçeroglu, and M. McCarthy, “Role of wickability on the critical heat flux of structured superhydrophilic surfaces,” Langmuir, vol. 30, no. 37, pp. 11225–11234, 2014. DOI: 10.1021/la5030923.
  • S. G. Kandlikar, “A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation,” J. Heat Transfer, vol. 123, no. 6, pp. 1071, 2001. DOI: 10.1115/1.1409265.
  • H. S. Ahn, C. Lee, J. Kim, and M. H. Kim, “The effect of capillary wicking action of micro/nano structures on pool boiling critical heat flux,” Int. J. Heat Mass Transf., vol. 55, no. 1–3, pp. 89–92, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.08.044.
  • S. Li, R. Furberg, M. S. Toprak, B. Palm, and M. Muhammed, “Nature-inspired boiling enhancement by novel nanostructured macroporous surfaces,” Adv. Funct. Mater., vol. 18, no. 15, pp. 2215–2220, 2008. DOI: 10.1002/adfm.200701405.
  • A. Jaikumar and S. G. Kandlikar, “Ultra-high pool boiling performance and effect of channel width with selectively coated open microchannels,” Int. J. Heat Mass Transf., vol. 95, pp. 795–805, 2016. DOI:10.1016/j.ijheatmasstransfer.2015.12.061.
  • A. R. Betz, J. Jenkins, C. J. Kim, and D. Attinger, “Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces,” Int. J. Heat Mass Transf., vol. 57, no. 2, pp. 733–741, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.10.080.
  • J. P. McHale, S. V. Garimella, T. S. Fisher, and G. A. Powell, “Pool boiling performance comparison of smooth and sintered copper surfaces with and without carbon nanotubes,” Nanoscale Microscale Thermophys. Eng., vol. 15, no. 3, pp. 133–150, 2011. DOI: 10.1080/15567265.2011.575918.
  • Y. Yang, X. Ji, and J. Xu, “Pool boiling heat transfer on copper foam covers with water as working fluid,” Int. J. Therm. Sci., vol. 49, no. 7, pp. 1227–1237, 2010. DOI: 10.1016/j.ijthermalsci.2010.01.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.