Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 36, 2023 - Issue 2
511
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Experimental and numerical investigation on cooling characteristics of Gifford-McMahon pulse tube cryocooler

ORCID Icon, ORCID Icon & ORCID Icon
Pages 254-281 | Received 09 Aug 2021, Accepted 29 Oct 2021, Published online: 23 Nov 2021

References

  • R. Radebaugh, “Cryocoolers: the state of the art and recent developments,” J. Phys.: Condens. Matter, vol. 21, pp. 164219, 2009.
  • R. Radebaugh. “Review of Refrigeration Methods.” in Handbook of Superconducting Materials. 2nd, D. CDAaL, Eds, Taylor and Francis Books (2020) to be published
  • W. E. Gifford and R. C. Longsworth, “Pulse-tube refrigeration,” Journal of Engineering for Industry, vol. 86, no. 3, pp.264–268, 1964. DOI: 10.1115/1.3670530.
  • E. I. Mikulin, A. A. Tarasov, and M. P. Shkrebyonock, Low-temperature Expansion Pulse Tubes. Advances in Cryogenic Engineering. Boston, MA: Springer, 1984, pp. 629–637.
  • R. Radebaugh Development of the pulse tube refrigerator as an efficient and reliable cryocooler. Conference Proceedings of Institute of Refrigeration London. p. 1–27.
  • K. Wang, S. Dubey, F. H. Choo, and F. Duan, “Modelling of pulse tube refrigerators with inertance tube and mass-spring feedback mechanism,” Appl. Energy, vol. 171, pp. 172–183, 2016. DOI: 10.1016/j.apenergy.2016.03.002.
  • Y. Lin and S. Zhu, “Numerical investigation of the new phase shifter for pulse tube refrigerator-inertance tube combining with step-piston,” International Journal of Refrigeration, vol. 97, pp. 42–48, 2019. DOI: 10.1016/j.ijrefrig.2018.09.016.
  • T. Lei, J. M. Pfotenhauer, and W. Zhou, “Analysis and comparison of different phase shifters for Stirling pulse tube cryocooler,” Cryogenics, vol. 80, pp. 63–73, 2016. DOI: 10.1016/j.cryogenics.2016.09.007.
  • S. Zhu, Y. Kakimi, and Y. Matsubara, “Investigation of active-buffer pulse tube refrigerator,” Cryogenics, vol. 37, no. 8, pp.461–471, 1997. DOI: 10.1016/S0011-2275(97)00080-5.
  • J. Yuan and J. Pfotenhauer, “Thermodynamic analysis of active valve pulse tube refrigerators,” Cryogenics, vol. 39, no. 4, pp.283–292, 1999. DOI: 10.1016/S0011-2275(98)00131-3.
  • T. Hirayama, R. Li, M. Xu, and S. Zhu Development status of a high cooling capacity single stage pulse tube cryocooler. Conference IOP Conference Series: Materials Science and Engineering, vol. 278. IOP Publishing, p. 012149.
  • J. M. Pfotenhauer and J. H. Baik, Compressor-specific Design of a Single Stage Pulse Tube Refrigerator. Cryocoolers 11. Boston, MA: Springer, 2002, pp. 249–257.
  • S. Celik and O. Ekren, “Two-phase refrigerant flow in the evaporator of a stirling cooling system with a thermosyphon loop,” Exp. Heat Transfer, vol. 33, no. 4, pp.305–317, 2020. DOI: 10.1080/08916152.2019.1635227.
  • S. Zhu, Y. Kakimi, and Y. Matsubara, “Waiting time effect of a GM type orifice pulse tube refrigerator,” Cryogenics, vol. 38, no. 6, pp.619–624, 1998. DOI: 10.1016/S0011-2275(98)00026-5.
  • S. Zhu and Y. Matsubara, “Numerical method of inertance tube pulse tube refrigerator,” Cryogenics, vol. 44, no. 9, pp.649–660, 2004. DOI: 10.1016/j.cryogenics.2004.03.006.
  • J. M. Pfotenhauer, Z. H. Gan, and R. Radebaugh Approximate design method for single stage pulse tube refrigerators. Advances in Cryogenic Engineering, Transactions of the Cryogenic Engineering Conference, , CEC: American Institute of Physics, Melville NY; 2008. p. 1437–1444.
  • N. Almtireen, J. Brandner, and J. Korvink, “Pulse tube cryocooler: phasor analysis and one-dimensional numerical simulation,” Journal of Low Temperature Physics, pp. 1–19, 2020.
  • S. Zhu, M. Nogawa, and T. Inoue, “Analysis of DC gas flow in GM type double inlet pulse tube refrigerators,” Cryogenics, vol. 49, no. 2, pp.66–71, 2009. DOI: 10.1016/j.cryogenics.2008.10.003.
  • D. Panda, A. K. Satapathy, and S. K. Sarangi, “Thermoeconomic performance optimization of an orifice pulse tube refrigerator,” Science and Technology for the Built Environment, vol. 26, no. 4, pp.492–510, 2020. DOI: 10.1080/23744731.2020.1717245.
  • D. Panda, K. Manoj, A. K. Satapathy, and S. K. Sarangi, “Optimal design of thermal performance of an orifice pulse tube refrigerator,” Thermal Analysis and Calorimetry, 2020.
  • K. S. Manoj, S. Anbarasu, S. Ghosh, and S. Sarangi, “Thermal performance of a single stage double inlet pulse tube refrigerator: experimental investigation and CFD simulation,” Exp. Heat Transfer, pp. 1–16, 2021. DOI: 10.1080/08916152.2021.1873875.
  • D. Liu, M. Dietrich, G. Thummes, and Z. Gan, “Numerical simulation of a GM-type pulse tube cryocooler system: part II,” Rotary Valve and Cold Head. Cryogenics., vol. 81, pp. 100–106, 2017.
  • Y. Banjare, R. Sahoo, and S. Sarangi, “CFD simulation of a Gifford–McMahon type pulse tube refrigerator,” International Journal of Thermal Sciences, vol. 48, no. 12, pp.2280–2287, 2009. DOI: 10.1016/j.ijthermalsci.2009.04.013.
  • A. Biswas and S. K. Ghosh, “Experimental and numerical investigation on performance of a double inlet type cryogenic pulse tube refrigerator,” Heat and Mass Transfer, vol. 52, no. 9, pp.1899–1908, 2016. DOI: 10.1007/s00231-015-1717-x.
  • J. Cha, S. Ghiaasiaan, P. Desai, J. Harvey, and C. Kirkconnell, “Multi-dimensional flow effects in pulse tube refrigerators,” Cryogenics, vol. 46, no. 9, pp.658–665, 2006. DOI: 10.1016/j.cryogenics.2006.03.001.
  • D. S. Antao and B. Farouk, “Numerical simulations of transport processes in a pulse tube cryocooler: effects of taper angle,” Int J Heat Mass Transf, vol. 54, no. 21–22, pp.4611–4620, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.06.016.
  • D. S. Antao and B. Farouk, “Numerical and experimental characterization of the inertance effect on pulse tube refrigerator performance,” Int J Heat Mass Transf, vol. 76, pp. 33–44, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.04.006.
  • T. Fang, et al., “Method for estimating off-axis pulse tube losses,” Cryogenics, vol. 88, pp. 1–9, 2017. DOI: 10.1016/j.cryogenics.2017.09.003.
  • T. Fang and S. Ghiaasiaan, “Influence of periodic side-to-side and heaving motions on the performance of a Stirling pulse tube cryocooler,” Cryogenics, vol. 111, pp. 103164, 2020. DOI: 10.1016/j.cryogenics.2020.103164.
  • Z. Gan, et al. “A single-stage GM-type pulse tube cryocooler operating at 10.6 K,” Cryogenics, vol. 49, no. 5, pp. 198–201, 2009. DOI: 10.1016/j.cryogenics.2009.01.004.
  • S. K. Rout, B. K. Choudhury, R. K. Sahoo, and S. K. Sarangi, “Multi-objective parametric optimization of Inertance type pulse tube refrigerator using response surface methodology and non-dominated sorting genetic algorithm,” Cryogenics, vol. 62, pp. 71–83, 2014. DOI: 10.1016/j.cryogenics.2014.03.019.
  • D. Gedeon, Sage User’s Guide: Stirling, Pulse-Tube and Low-T Cooler Model Classes. 2016.
  • D. Panda, S. K. Sarangi, and A. K. Satapathy, “Influence of characteristics of flow control valves on the cooling performance of a GM cryocooler,” Vacuum, vol. 168, pp. 108836, 2019. DOI: 10.1016/j.vacuum.2019.108836.
  • M. Will, I. Tanaeva, R. Li, and A. De Waele, “New rotary valves for pulse-tube refrigerators,” Cryogenics, vol. 44, no. 11, pp.793–800, 2004. DOI: 10.1016/j.cryogenics.2004.03.022.
  • Swagelock https://www.swagelok.com/downloads/webcatalogs/EN/MS-01-142.PDF.
  • D. S. Antao and B. Farouk, “Experimental and numerical investigations of an orifice type cryogenic pulse tube refrigerator,” Appl. Therm. Eng., vol. 50, no. 1, pp.112–123, 2013. DOI: 10.1016/j.applthermaleng.2012.05.015.
  • Endevco. Test and measurement product catalog. 2019.
  • Tektronix, TBS1000 Series Digital Storage Oscilloscopes: User Manual. 2019.
  • ADVANTECH. ADAM 4000 Series Data Acquisition Modules. 2019.
  • Scientific. DC Power Supply PSD3210. 2019.
  • J. P. Holman, Experimental Methods for Engineers. 2001.
  • R. A. Ackermann, Cryogenic Regenerative Heat Exchangers. New York: Plenum Press, 1997.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.