Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 36, 2023 - Issue 3
588
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Saturated and subcooled pool boiling heat transfer in mixtures of water and glycerin

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 283-311 | Received 26 Aug 2021, Accepted 06 Jan 2022, Published online: 31 Jan 2022

References

  • H. Honda and J. J. Wei, “Enhanced boiling heat transfer from electronic components by use of surface microstructures,” Exp. Therm. Fluid Sci., vol. 28, no. 2, pp. 159–169, Jan. 2004. DOI: 10.1016/S0894-1777(03)00035-9.
  • Y. Fujita and Q. Bai, “Critical heat flux of binary mixtures in pool boiling and its correlation in terms of Marangoni number,” Int. J. Refrig., vol. 20, no. 8, pp. 616–622, Dec. 1997. DOI: 10.1016/S0140-7007(97)00026-1.
  • T. P. Allred, J. A. Weibel, and S. V. Garimella, “Enabling highly effective boiling from superhydrophobic surfaces,” Phys. Rev. Lett., vol. 120, no. 17, pp. 174501, Apr. 2018. DOI: 10.1103/PhysRevLett.120.174501.
  • Y. Fujita and M. Tsutsui, “Heat transfer in nucleate pool boiling of binary mixtures,” Int. J. Heat Mass Transf., vol. 37, pp. 291–302, Mar. 1994. DOI: 10.1016/0017-9310(94)90030-2.
  • Y. Hu, S. Zhang, X. Li, and S. Wang, “Heat transfer enhancement of sub- cooled pool boiling with self-rewetting fluid,” Int. J. Heat Mass Transf., vol. 83, pp. 64–68, Apr. 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.11.081.
  • M. Arik, A. Koşar, H. Bostanci, and A. Bar-Cohen, “Pool boiling critical heat flux in dielectric liquids and nanofluids,” Advances in Heat Transfer, Y. I. Cho and G. A. Greene Eds., Vol. 43 of Heat Transfer, pp. 1–76, Elsevier, Jan. 2011. 10.1016/B978-0-12-381529-3.00001-3.
  • T. Y. T. Lee, “Application of dielectric binary mixtures in electronic cooling — nucleate pool boiling regime,” J. Electron. Manuf., vol. 07, no. 2, pp. 93–103, June. 1997. DOI: 10.1142/S0960313197000117.
  • W. L. R. Souza, C. S. Silva, L. A. C. Meleiro, and M. F. Mendes, “Ethanol de- hydration in packed distillation column using glycerol as entrainer: experiments and hetp evaluation,” Brazilian J. Chem. Eng., vol. 33, no. 2, pp. 415–426, June. 2016. DOI: 10.1590/0104-6632.20160332s20150341.
  • I. Banu, G. Guta, C. S. Bildea, and G. Bozga, “Design and performance evaluation of a plant for glycerol conversion to acrolein,” Environ. Eng. Manag. J., vol. 14, no. 3, pp. 509–517, 2015. DOI: 10.30638/eemj.2015.054.
  • L. Zhang, B. Yang, and W. Zhang, “Vapor-Liquid equilibrium of Water + Ethanol + Glycerol: experimental measurement and modeling for ethanol dehydration by extractive distillation,” J. Chem. Eng. Data, vol. 60, no. 6, pp. 1892–1899, 2015. DOI: 10.1021/acs.jced.5b00116.
  • Y. Gu and F. Jérôme, “Glycerol as a sustainable solvent for green chemistry,” Green Chem., vol. 12, no. 7, pp. 1127–1138, July. 2010. DOI: 10.1039/C001628D.
  • J. Wu, L. Wang, B. Li, and Y. Dai, “Flow boiling heat transfer performances of R1234ze(e)/R152a in a horizontal micro-fin tube,” Exp. Heat Transf., pp. 1–18, Jan. 2021. DOI: 10.1080/08916152.2021.1873876.
  • L. Wang, Y. Dai, J. Wu, and B. Li, “Experimental investigation on flow boiling heat transfer characteristics of R1234ze(e)/R152a in 6-mm ID horizontal smooth tube,” Exp. Heat Transf., vol. 34, no. 4, pp. 342–355, June. 2021. DOI: 10.1080/08916152.2020.1749191.
  • S. Wang, et al., “1,3-Propanediol: separation and purification from crude glycerol-based fermentation,” Eng. Life Sci., vol. 15, no. 8, pp. 788–796, 2015. DOI: 10.1002/elsc.201500004.
  • W. N. R. W. Isahak, Z. A. C. Ramli, M. Ismail, J. M. Jahim, and M. A. Yarmo, “Recovery and purification of crude glycerol from vegetable oil transesterification,” Sep. Purif. Rev., vol. 44, no. 3, pp. 250–267, July. 2015. DOI: 10.1080/15422119.2013.851696.
  • W. C. Kuo, C. T. Avedisian, and W. Tsang, “Conversion of glycerine to synthesis gas and methane by film boiling,” in ASME 2011 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers Digital Collection, Aug. 2012, pp. 1445–1449. doi:10.1115/IMECE2011-64449.
  • V. Cardoso, A. Bernardo, and M. Giulietti, “Ethanol absorption from CO2 using solutions of glycerol and glycols,” Chem. Eng. Commun., vol. 205, no. 10, pp. 1507–1519, 2018. DOI: 10.1080/00986445.2018.1458027.
  • K. Zhang, et al., “Concentration of aqueous glycerol solution by using continuous-effect membrane distillation,” Sep. Purif. Technol., vol. 144, pp. 186–196, Apr. 2015. DOI: 10.1016/j.seppur.2015.02.034.
  • V. I. Tolubinsky, Y. N. Ostrovsky, and A. A. Kriveshko, “Heat transfer to boiling water-glycerine mixtures,” Heat Transf. Soviet Res., vol. 2, pp. 22–24, 1970.
  • C. V. Sternling and L. J. Tichacek, “Heat transfer coefficients for boiling mixtures: experimental data for binary mixtures of large relative volatility,” Chem. Eng. Sci., vol. 16, no. 3, pp. 297–337, Dec. 1961. DOI: 10.1016/0009-2509(61)80040-7.
  • M. M. Sarafraz, S. M. Peyghambarzadeh, and S. A. Alavi Fazel, “Enhancement of nucleate pool boiling heat transfer to dilute binary mixtures using endothermic chemical reactions around the smoothed horizontal cylinder,” Heat Mass Transf., vol. 48, no. 10, pp. 1755–1765, Oct. 2012. DOI: 10.1007/s00231-012-1019-5.
  • M. M. Sarafraz and S. M. Peyghambarzadeh, “Influence of thermodynamic models on the prediction of pool boiling heat transfer coefficient of dilute binary mixtures,” Int. Commun. Heat Mass Transf., vol. 39, no. 8, pp. 1303–1310, Oct. 2012. DOI: 10.1016/j.icheatmasstransfer.2012.06.020.
  • S. A. Alavi Fazel, M. Sarafraz, A. Arabi Shamsabadi, and S. M. Peyghambarzadeh, “Peygham- barzadeh S.M., Pool boiling heat transfer in diluted water/glycerol binary solutions,” Heat Transf. Eng., vol. 34, no. 10, pp. 828–837, Aug. 2013. DOI: 10.1080/01457632.2012.746157.
  • D. A. McNeil, B. M. Burnside, E. A. Elsaye, S. M. Salem, and S. Baker, “Shell- Side boiling of a glycerol-water mixture at low sub-atmospheric pressures,” Appl. Therm. Eng., vol. 115, pp. 1438–1450, Mar. 2017. DOI: 10.1016/j.applthermaleng.2016.11.169.
  • Y. Fujita and M. Tsutsui, “Experimental investigation in pool boiling heat transfer of ternary mixture and heat transfer correlation,” Exp. Therm. Fluid Sci., vol. 26, no. 2–4, pp. 237–244, June. 2002. DOI: 10.1016/s0894-1777(02)00132-2.
  • S. G. Kandlikar, “Boiling heat transfer with binary mixtures: part I—A theoretical model for pool boiling,” J. Heat Transf., vol. 120, no. 2, pp. 380–387, May. 1998. DOI: 10.1115/1.2824260.
  • B. Yang, M. M. Sarafraz, and M. Arjomandi, “Marangoni effect on the thermal performance of glycerol/water mixture in microchannel,” Appl. Therm. Eng., vol. 161, pp. 114142, Oct. 2019. DOI: 10.1016/j.applthermaleng.2019.114142.
  • S. M. Peyghambarzadeh, M. Jamialahmadi, S. A. Alavi Fazel, and S. Azizi, “Experimental and theoretical study of pool boiling heat transfer to amine solutions,” Brazilian J. Chem. Eng., vol. 26, no. 1, pp. 33–43, Mar. 2009. DOI: 10.1590/s0104-66322009000100004.
  • B. Fekadu, R. Kathiravan, and P. Saravanan, “Augmentation of pool boiling heat transfer characteristics using naphtha carbon soot nanoparticles –water based nanofluids,” Exp. Heat Transf., pp. 1–16, July. 2021. DOI: 10.1080/08916152.2021.1958108.
  • S. S. Thakur, S. S. Chandel, A. Kakoria, and S. Sinha-Ray, “Enhancement in pool boiling heat transfer of ethanol and nanofluid on novel supersonic nanoblown nanofiber textured surface,” Exp. Heat Transf., pp. 1–17, May. 2021. DOI: 10.1080/08916152.2021.1919243.
  • V. V. Nirgude and S. K. Sahu, “Enhancement in nucleate pool boiling heat transfer on nano-second laser processed copper surfaces,” Exp. Heat Transf., vol. 32, no. 6, pp. 566–583, Nov. 2019. DOI: 10.1080/08916152.2018.1559262.
  • E. I. Eid, A. A. Al-Nagdy, and R. A. Khalaf-Allah, “Nucleate pool boiling heat transfer above laser machining heating surfaces with different micro-cavity geometric shape for water-aluminum oxide nanofluid,” Exp. Heat Transf., pp. 1–20, June. 2021. DOI: 10.1080/08916152.2021.1946207.
  • G. F. Hewitt, “Boiling,” Handbook of Heat Transfer, W. M. Rohsenow, J. P. Hartnett, Y. I. Cho, N. Y. New York, and U. S. A. McGraw-Hill, pp., third, 1998.
  • I. Mokbel, et al., “Vapor–Liquid Equilibria of Glycerol, 1,3-Propanediol, Glycerol + Water, and Glycerol + 1,3-Propanediol,” J. Chem. Eng. Data, vol. 57, no. 2, pp. 284–289, Feb. 2012. DOI: 10.1021/je200766t.
  • Glycerine Producers’ Association, Physical Properties of Glycerine and Its Solutions. 1963.
  • M. Holmgren and X. Steam, “Thermodynamic properties of water and steam, MATLAB central file exchange,” Nov. 2020. Available at: https://www.mathworks.com/matlabcentral/fileexchange/9817-x-steam-thermodynamic-properties-of-water-and-steam.
  • C. H. Watkins, Vapor-Liquid Equilibrium Data and Other Physical Properties of the Ternary System Ethanol, Glycerine, and Water. PhD thesis, University of Louisville, Louisville, KY, USA, 1936. Available at: https://ir.library.louisville.edu/etd/1940/.
  • M. H. Rausch, A. Heller, and A. P. Fröba, “Binary Diffusion coefficients of Glycerol–Water mixtures for temperatures from 323 to 448 K by dynamic light scattering,” J. Chem. Eng. Data, vol. 62, no. 12, pp. 4364–4370, Dec. 2017. DOI: 10.1021/acs.jced.7b00717.
  • V. Vajc, R. Šulc, and M. Dostál, “Pool boiling heat transfer coefficients in mixtures of water and glycerin,” article no. 830 Processes, vol. 9, no. 5, pp. 1–19, May. 2021. DOI: 10.3390/pr9050830.
  • S. R. G. Vadlamudi, A. K. Nayak, and P. Ghosh, “An experimental study of CHF and power transients in flow boiling at low-pressure low-flow conditions,” Exp. Heat Transf., vol. 32, no. 6, pp. 509–523, Nov. 2019. DOI: 10.1080/08916152.2018.1545807.
  • S. Jun, J. Kim, S. M. You, and H. Y. Kim, “Effect of subcooling on pool boiling of water from sintered copper microporous coating at different orientations,” Sci. Technol. Nucl. Install., vol. 2018, article no. e8623985, pp. 1–9, Aug. 2018. DOI: 10.1155/2018/8623985.
  • M. S. El-Genk and J. L. Parker, “Nucleate boiling of FC-72 and HFE-7100 on porous graphite at different orientations and liquid subcooling,” Energy Convers. Manage., vol. 49, no. 4, pp. 733–750, Apr. 2008. DOI: 10.1016/j.enconman.2007.07.028.
  • J. J. Wei and H. Honda, “Effects of fin geometry on boiling heat transfer from silicon chips with micro-pin-fins immersed in FC-72,” Int. J. Heat Mass Transf., vol. 46, no. 21, pp. 4059–4070, Oct. 2003. DOI: 10.1016/S0017-9310(03)00226-6.
  • S. Zhang, et al., “Pool boiling heat transfer enhancement by porous interconnected microchannel nets at different liquid subcooling,” Appl. Therm. Eng., vol. 93, pp. 1135–1144, Jan. 2016. DOI: 10.1016/j.applthermaleng.2015.10.044.
  • T. Yabuki and O. Nakabeppu, “Microscale wall heat transfer and bubble growth in single bubble subcooled boiling of water,” Int. J. Heat Mass Transf., vol. 100, pp. 851–860, Sept. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.112.
  • J. Wu and V. K. Dhir, “Numerical simulations of the dynamics and heat transfer associated with a single bubble in subcooled pool boiling,” J. Heat Transf., vol. 132, no. 111501, Aug. 2010. DOI: 10.1115/1.4002093.
  • V. Sathyamurthi, H. S. Ahn, D. Banerjee, and S. C. Lau, “Subcooled pool boiling experiments on horizontal heaters coated with carbon nanotubes,” J. Heat Transf., vol. 131, no. 071501, Apr. 2009. DOI: 10.1115/1.3000595.
  • A. Ono and H. Sakashita, “Liquid–vapor structure near heating surface at high heat flux in subcooled pool boiling,” Int. J. Heat Mass Transf., vol. 50, no. 17, pp. 3481–3489, Aug. 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.01.026.
  • A. Sathyanarayana, P. Warrier, Y. Joshi, and A. Teja, “Saturated and sub- cooled pool boiling of HFE-7200 mixtures on a copper nanowire surface,” Front.Heat Mass Transf., vol. 2, Jan. 2012. 10.5098/hmt.v2.4.3007.
  • M. Arik and A. Bar-Cohen, “Pool boiling of perfluorocarbon mixtures on silicon surfaces,” Int. J. Heat Mass Transf., vol. 53, no. 23, pp. 5596–5604, Nov. 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.06.034.
  • T. Ma, et al., Immersion cooling technology of SiC-based on-vehicle inverter by anti- freezing liquid with subcooled boiling, in 2017 International Conference on Electronics Packaging (ICEP), Apr. 2017, pp. 199–201. doi:10.23919/ICEP.2017.7939356.
  • T. Furusho, K. Yuki, and K. Suzuki, “Fundamental study on subcooled boiling of binary mixture of anti-freezing liquid toward advanced cooling technology for a SiC-based on-vehicle inverter,” in 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), May 2016, pp. 193–198. doi:10.1109/ITHERM.2016.7517549.
  • T. O. Hui and J. R. Thome, “A study of binary mixture boiling: boiling site density and subcooled heat transfer,” Int. J. Heat Mass Transf., vol. 28, no. 5, pp. 919–928, May. 1985. DOI: 10.1016/0017-9310(85)90273-X.
  • H. K. Forster and R. Greif, “Heat transfer to a boiling liquid—mechanisms and Correlations,” ASME J. Heat Transf., vol. 81, no. 1, pp. 43–53, Feb. 1959. DOI: 10.1115/1.4008129.
  • K. N. Rainey, S. M. You, and S. Lee, “Effect of pressure, subcooling, and dissolved gas on pool boiling heat transfer from microporous surfaces in FC-72,” J. Heat Transf., vol. 125, no. 1, pp. 75–83, Jan. 2003. DOI: 10.1115/1.1527890.
  • L. Lee and B. N. Singh, “The influence of subcooling on nucleate pool boiling heat transfer,” Lett.Heat Mass Transf., vol. 2, no. 4, pp. 315–323, July. 1975. DOI: 10.1016/0094-4548(75)90015-6.
  • C. D. Henry and J. Kim, “A study of the effects of heater size, subcooling, and gravity level on pool boiling heat transfer,” Int. J. Heat Fluid Flow, vol. 25, no. 2, pp. 262–273, Apr. 2004. DOI: 10.1016/j.ijheatfluidflow.2003.11.019.
  • M. Yaghoubi, K. Hirbodi, M. R. Nematollahi, and S. Bashiri, “Experimental study of subcooled pool boiling around a circular rough cylinder,” AUT J. Mech. Eng., vol. 1, no. 1, pp. 21–28, 2017. DOI: 10.22060/mej.2016.793.
  • M. Može, “Effect of boiling-induced aging on pool boiling heat transfer performance of untreated and laser-textured copper sur- faces,” Appl. Therm. Eng., vol. 181, pp. 116025, Nov. 2020. DOI: 10.1016/j.applthermaleng.2020.116025.
  • H. Moghadasi, H. Saffari, and N. Malekian, “Experimental and semi- analytical investigation of heat transfer in nucleate pool boiling by considering surface structuring methods,” Exp. Heat Transf., pp. 1–21, Apr. 2020. DOI: 10.1080/08916152.2020.1743385.
  • M. Može, V. Vajc, M. Zupančič, R. Šulc, and I. Golobič, “Pool boiling performance of water and self-rewetting fluids on hybrid functionalized aluminum surfaces,” Processes, vol. 9, no. 6, pp. 1058, June. 2021. DOI: 10.3390/pr9061058.
  • M. Može, et al., “Laser-engineered microcavity surfaces with a nanoscale superhydrophobic coating for extreme boiling performance,” ACS Appl. Mater. Interf., vol. 12, no. 21, pp. 24419–24431, May. 2020. DOI: 10.1021/acsami.0c01594.
  • M. Može, M. Zupančič, M. Hočevar, I. Golobič, and P. Gregorčič, “Surface chemistry and morphology transition induced by critical heat flux incipience on laser-textured copper surfaces,” Appl. Surf. Sci., vol. 490, pp. 220–230, Oct. 2019. DOI: 10.1016/j.apsusc.2019.06.068.
  • M. Može, V. Vajc, M. Zupančič, and I. Golobič, “Hydrophilic and hydrophobic nanostructured copper surfaces for efficient pool boiling heat transfer with water, water/butanol mixtures and Novec 649,” Nanomaterials, vol. 11, no. 12, pp. 3216, Dec. 2021. DOI: 10.3390/nano11123216.
  • A. M. Rishi, S. G. Kandlikar, and A. Gupta, “Salt templated and graphene nanoplatelets draped copper (GNP-draped-Cu) composites for dramatic improvements in pool boiling heat transfer,” Sci. Rep., vol. 10, no. 1, pp. 11941, July. 2020. DOI: 10.1038/s41598-020-68672-1.
  • M. M. Rahman, E. Ölçeroğlu, and M. McCarthy, “Role of wickability on the critical heat flux of structured superhydrophilic surfaces,” Langmuir, vol. 30, no. 37, pp. 11225–11234, Sept. 2014. DOI: 10.1021/la5030923.
  • M. Može, M. Zupančič, and I. Golobič, “Investigation of the scatter in reported pool boiling CHF measurements including analysis of heat flux and measurement uncertainty evaluation methodology,” Appl. Therm. Eng., vol. 169, pp. 114938, Mar. 2020. DOI: 10.1016/j.applthermaleng.2020.114938.
  • D. Attinger, et al., “Surface engineering for phase change heat transfer: a review,” MRS Energy Sustain., vol. 1, 2014 /ed. 10.1557/mre.2014.9.
  • R. Mallozzi, R. L. Judd, and N. Balakrishnan, “Investigation of randomness, overlap and the interaction of bubbles forming at adjacent nucleation sites in pool boiling,” Int. J. Heat Mass Transf., vol. 43, no. 18, pp. 3317–3330, Sept. 2000. DOI: 10.1016/S0017-9310(99)00377-4.
  • R. L. Judd and A. Chopra, “Interaction of the nucleation processes occurring at adjacent nucleation sites,” J. Heat Transf., vol. 115, no. 4, pp. 955–962, Nov. 1993. DOI: 10.1115/1.2911392.
  • K. Cornwell and S. D. Houston, “Nucleate pool boiling on horizontal tubes: a convection-based correlation,” Int. J. Heat Mass Transf., vol. 37, pp. 303–309, Mar. 1994. DOI: 10.1016/0017-9310(94)90031-0.
  • K. Stephan and M. Abdelsalam, “Heat-transfer correlations for natural convection boiling,” Int. J. Heat Mass Transf., vol. 23, no. 1, pp. 73–87, Jan. 1980. DOI: 10.1016/0017-9310(80)90140-4.
  • E. U. Schlünder, “über den Wärmeübergang bei der Blasenverdampfung von Gemischen,” Verfahrenstechnik, vol. 16, pp. 692, 1982.
  • V. Yagov, “Nucleate boiling heat transfer: possibilities and limitations of theoretical analysis,” Heat Mass Transf., vol. 45, no. 7, pp. 881–892, May. 2009. DOI: 10.1007/s00231-007-0253-8.
  • J. R. Thome, S. Shakir, and A. New, “Correlation for nucleate pool boiling of aqueous mixtures,” in Proceedings of the Eighth International Heat Transfer Conference, vol. 18 ( 9), (USA), INIS, 1987.
  • W. Calus and P. Rice, “Pool boiling—binary liquid mixtures,” Chem. Eng. Sci., vol. 27, no. 9, pp. 1687–1697, Sept. 1972. DOI: 10.1016/0009-2509(72)80083-6.
  • R. J. Benjamin and A. R. Balakrishnan, “Nucleate boiling heat transfer of binary mixtures at low to moderate heat fluxes,” J. Heat Transf., vol. 121, no. 2, pp. 365, 1999. DOI: 10.1115/1.2825989.
  • T. Inoue and M. Monde, “Prediction of pool boiling heat transfer coefficient in ammonia/water mixtures,” Heat Transfer—Asian Res., vol. 38, no. 2, pp. 65–72, 2009. DOI: 10.1002/htj.20234.
  • T. Inoue and M. Monde, “Pool boiling heat transfer in binary mixtures,” Trans. JSME, vol. 57, no. 544, pp.4197–4202, 1991. DOI: 10.1299/kikaib.57.4197.
  • J. R. Thome, “Prediction of binary mixture boiling heat transfer coefficients using only phase equilibrium data,” Int. J. Heat Mass Transf., vol. 26, no. 7, pp. 965–974, 1983. DOI: 10.1016/s0017-9310(83)80121-5.
  • T. Inoue, N. Kawae, and M. Monde, “Characteristics of heat transfer coefficient during nucleate pool boiling of binary mixtures,” Heat Mass Transf., vol. 33, no. 4, pp. 337–344, Feb. 1998. DOI: 10.1007/s002310050199.
  • K. Stephan, Heat Transfer in Condensation and Boiling. Berlin, Germany: Springer Berlin Heidelberg, 1992. DOI: 10.1007/978-3-642-52457-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.