Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 36, 2023 - Issue 3
626
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation on thermo hydraulic performance of ferronanofluid flow in a dimpled tube under magnetic field effect

, , , , &
Pages 312-330 | Received 19 Oct 2021, Accepted 28 Dec 2021, Published online: 16 Jan 2022

References

  • A. O. Firoozi, S. Majidi, and M. Ameri, “A numerical assessment on heat transfer and flow characteristics of nanofluid in tubes enhanced with a variety of dimple configurations,” Therm. Sci. Eng. Prog., vol. 19, pp. 100578, 2020. DOI:10.1016/j.tsep.2020.100578.
  • W.-T. Ji, A. M. Jacobi, Y.-L. He, and W.-Q. Tao, “Summary and evaluation on the heat transfer enhancement techniques of gas laminar and turbulent pipe flow,” Int. J. Heat Mass Transf., vol. 111, pp. 467–483, 2017.
  • R. Sureshkumar, S. T. Mohideen, and N. Nethaji, “Heat transfer characteristics of nanofluids in heat pipes: a review,” Renew. Sustain. Energy Rev., vol. 20, pp. 397–410, 2013.
  • S. U. S. Choi and J. A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles. IL (United States): Argonne National Lab., 1995.
  • H. Kaya, K. Arslan, and N. Eltugral, “Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids,” Renew. Energy, vol. 122, pp. 329–338, 2018.
  • Z. Said, R. Saidur, and N. A. Rahim, “Energy and exergy analysis of a flat plate solar collector using different sizes of aluminium oxide based nanofluid,” J. Clean. Prod., vol. 133, pp. 518–530, 2016.
  • A. A. Minea and W. M. El-Maghlany, “Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: recent findings and numerical comparison,” Renew. Energy, vol. 120, pp. 350–364, 2018.
  • R. B. Ja and K. Kumar, et al. “Thermodynamic analysis of hybrid nanofluid based solar flat plate collector,” World J. Eng. 15 1 , 2018.
  • A. Rafiei, et al., “Solar desalination system with a focal point concentrator using different nanofluids,” Appl. Therm. Eng., vol. 174, pp. 115058, 2020.
  • F. Abbas, et al. “Nanofluid: potential evaluation in automotive radiator,” J. Mol. Liq., vol. 297, pp. 112014, 2020.
  • R. S. Vajjha, D. K. Das, and D. R. Ray, “Development of new correlations for the Nusselt number and the friction factor under turbulent flow of nanofluids in flat tubes,” Int. J. Heat Mass Transf., vol. 80, pp. 353–367, 2015.
  • N. Bozorgan, K. Krishnakumar, and N. Bozorgan, Numerical Study on Application of CuO-water Nanofluid in Automotive Diesel Engine Radiator 2 130–136 . 2012.
  • M. Bahiraei and M. Hangi, “Investigating the efficacy of magnetic nanofluid as a coolant in double-pipe heat exchanger in the presence of magnetic field,” Energy Convers. Manag., vol. 76, pp. 1125–1133, Dec. 2013. DOI: 10.1016/j.enconman.2013.09.008.
  • M. Bezaatpour and M. Goharkhah, “Convective heat transfer enhancement in a double pipe mini heat exchanger by magnetic field induced swirling flow,” Appl. Therm. Eng., vol. 167, pp. 114801, Feb. 2020. DOI: 10.1016/j.applthermaleng.2019.114801.
  • M. Bezaatpour and H. Rostamzadeh, “Heat transfer enhancement of a fin-and-tube compact heat exchanger by employing magnetite ferrofluid flow and an external magnetic field,” Appl. Therm. Eng., vol. 164, pp. 114462, Jan. 2020. DOI: 10.1016/j.applthermaleng.2019.114462.
  • M. Tekir, E. Taskesen, B. Aksu, E. Gedik, and K. Arslan, “Comparison of bi-directional multi-wave alternating magnetic field effect on ferromagnetic nanofluid flow in a circular pipe under laminar flow conditions,” Appl. Therm. Eng., vol. 179, pp. 115624, Oct. 2020. DOI: 10.1016/j.applthermaleng.2020.115624.
  • L. S. Sundar, M. T. Naik, K. V. Sharma, M. K. Singh, and T. C. S. Reddy, “Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid,” Exp. Therm. Fluid Sci., vol. 37, pp. 65–71, 2012.
  • H. Sadrhosseini, A. Sehat, and M. B. Shafii, “Effect of magnetic field on internal forced convection of ferrofluid flow in porous media,” Exp. Heat Transf., vol. 29, pp. 1–16, 2016.
  • Z. Narankhishig, J. Ham, H. Lee, and H. Cho, “Convective heat transfer characteristics of nanofluids including the magnetic effect on heat transfer enhancement-A review,” Appl. Therm. Eng. 193 , pp. 116987 doi:https://doi.org/10.1016/j.applthermaleng.2021.116987, 2021.
  • M. Lajvardi, et al. “Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect,” J. Magn. Magn. Mater., vol. 322, no. 21, pp. 3508–3513, 2010.
  • L. Sha, Y. Ju, H. Zhang, and J. Wang, “Experimental investigation on the convective heat transfer of Fe3O4/water nanofluids under constant magnetic field,” Appl. Therm. Eng., vol. 113, pp. 566–574, 2017. DOI:10.1016/j.applthermaleng.2016.11.060.
  • S. Mei, C. Qi, M. Liu, F. Fan, and L. Liang, “Effects of paralleled magnetic field on thermo-hydraulic performances of Fe3O4-water nanofluids in a circular tube,” Int. J. Heat Mass Transf., vol. 134, pp. 707–721, May. 2019. DOI: 10.1016/J.IJHEATMASSTRANSFER.2019.01.088.
  • F. Fan, C. Qi, J. Tang, and Q. Liu, “Thermal and exergy efficiency of magnetohydrodynamic Fe3O4-H2O nanofluids flowing through a built-in twisted turbulator corrugated tube under magnetic field,” Asia-Pacific J. Chem. Eng., vol. 15, pp. e2500, 2020.
  • B. Sun, Y. Guo, D. Yang, and H. Li, “The effect of constant magnetic field on convective heat transfer of Fe3O4/water magnetic nanofluid in horizontal circular tubes,” Appl. Therm. Eng., vol. 171, pp. 114920, 2020.
  • M. Li, T. S. Khan, E. Al-Hajri, and Z. H. Ayub, “Single phase heat transfer and pressure drop analysis of a dimpled enhanced tube,” Appl. Therm. Eng., vol. 101, no. July, pp. 38–46, 2016. DOI: 10.1016/j.applthermaleng.2016.03.042.
  • O. Turgut and K. Arslan, “Periodically fully developed laminar flow and heat transfer in a two-dimensional horizontal channel with staggered fins,” Therm. Sci., vol. 21, pp. 2443–2455, 2017.
  • A. Berber, M. Gürdal, and K. Bağırsakçı, “Prediction of heat transfer in a circular tube with aluminum and Cr-Ni alloy pins using artificial neural network,” Exp. Heat Transf., 2020. DOI: 10.1080/08916152.2020.1793826.
  • A. H. Altun and O. Ziylan, “Experimental investigation of the effects of horizontally oriented vertical sinusoidal wavy fins on heat transfer performance in case of natural convection,” Int. J. Heat Mass Transf., vol. 139, pp. 425–431, 2019.
  • A. H. Altun, M. Gürdal, and A. Berber, “Effects of sinusoidal strip element with different amplitudes on heat transfer and flow characteristics of circular channels,” Heat Transf. Res., vol. 50, no. 6, 2019. DOI:10.1615/HeatTransRes.2018025038.
  • R. J. Yadav, T. Mahajani, S. S. Kore, P. M. Gadhe, and D. A. Kamble, “Investigation of heat transfer characteristics using Fe3O4 nanofluid along with TT inserts in tube with uniform electromagnetic field,” Appl. Nanosci., pp. 1–23 doi:https://doi.org/10.1007/s13204-021-01905-5, 2021.
  • A. H. Altun, M. Gurdal, and A. Berber Karabük University , “The effects of different amplitude sinusoidal corrugated strip elements on heat transfer in pipes (ICESE) 1st INTERNATIONAL CONFERENCE ON ENERGY SYSTEMS ENGINEERING 2-4 November Karabük, Turkey”, 2017.
  • Y. Wang, C. Qi, Z. Ding, J. Tu, and R. Zhao, “Numerical simulation of flow and heat transfer characteristics of nanofluids in built-in porous twisted tape tube,” Powder Technol., vol. 392, pp. 570–586, 2021.
  • N. Gunasekaran, et al., “Investigation on ETC solar water heater using twisted tape inserts,” Mater. Today Proc. 47 15 5011–5016 doi:https://doi.org/10.1016/j.matpr.2021.04.586 , 2021.
  • T. Dagdevir and V. Ozceyhan, “An experimental study on heat transfer enhancement and flow characteristics of a tube with plain, perforated and dimpled twisted tape inserts,” Int. J. Therm. Sci., vol. 159, pp. 106564, 2021.
  • A. H. Altun, M. Gurdal, and A. Berber, “Effects of sinusoidal turbulator in cylindrical channel on heat transfer and flow characteristics,” Maejo Int. J. Sci. Technol., vol. 14, pp. 27–42, 2020.
  • F. Fan, C. Qi, Q. Liu, and M. Sheikholeslami, “Effect of twisted turbulator perforated ratio on thermal and hydraulic performance of magnetic nanofluids in a novel thermal exchanger system,” Case Stud. Therm. Eng., vol. 22, pp. 100761, 2020.
  • M. Sheikholeslami, et al., “Modification for helical turbulator to augment heat transfer behavior of nanomaterial via numerical approach,” Appl. Therm. Eng., vol. 182, pp. 115935, 2021.
  • G. Xie, J. Liu, W. Zhang, G. Lorenzini, and C. Biserni, “Numerical prediction of flow structure and heat transfer in square channels with dimples combined with secondary half-size dimples/protrusions,” Numer. Heat Transf. Part A Appl., vol. 65, pp. 327–356, 2014.
  • Y. Chudnovsky and A. Kozlov Gas Technology Institute , “Development and field trial of dimpled-tube technology for chemical industry process heaters,” , . 2006. ()
  • A. Kumar, R. Maithani, and A. R. S. Suri, “Numerical and experimental investigation of enhancement of heat transfer in dimpled rib heat exchanger tube,” Heat Mass Transf. Und Stoffuebertragung, vol. 53, no. 12, pp. 3501–3516, 2017. DOI: 10.1007/s00231-017-2080-x.
  • R. Maithani and A. Kumar, “Correlations development for Nusselt number and friction factor in a dimpled surface heat exchanger tube,” Exp. Heat Transf., vol. 33, no. 2, pp. 101–122, Feb. 2020. DOI: 10.1080/08916152.2019.1573863/FORMAT/EPUB.
  • A. R. S. Suri, A. Kumar, and R. Maithani, “Convective heat transfer enhancement techniques of heat exchanger tubes: a review,” vol.39, no. 7, pp. 649–670, Oct. 2017. DOI:10.1080/01430750.2017.1324816.
  • A. Garcia, J. P. Solano, P. G. Vicente, and A. Viedma, “The influence of artificial roughness shape on heat transfer enhancement: corrugated tubes, dimpled tubes and wire coils,” Appl. Therm. Eng., vol. 35, pp. 196–201, 2012.
  • A. I. Leontiev, N. A. Kiselev, S. A. Burtsev, M. M. Strongin, and Y. A. Vinogradov, “Experimental investigation of heat transfer and drag on surfaces with spherical dimples,” Exp. Therm. Fluid Sci., vol. 79, pp. 74–84, 2016.
  • Z. Huang, G. L. Yu, Z. Y. Li, and W. Q. Tao, “Numerical study on heat transfer enhancement in a receiver tube of parabolic trough solar collector with dimples, protrusions and helical fins,” Energy Procedia, vol. 69, pp. 1306–1316, 2015. DOI:10.1016/j.egypro.2015.03.149.
  • R. Sabir, M. M. Khan, N. A. Sheikh, I. U. Ahad, and D. Brabazon, “Assessment of thermo-hydraulic performance of inward dimpled tubes with variation in angular orientations,” Appl. Therm. Eng., vol. 170, pp. 115040, 2020.
  • R. B. Manoram, R. S. Moorthy, and R. Ragunathan, “Investigation on influence of dimpled surfaces on heat transfer enhancement and friction factor in solar water heater,” J. Therm. Anal. Calorim., 2020. DOI: 10.1007/s10973-020-09746-0.
  • M. Gürdal, H. K. Pazarlıoğlu, K. Arslan, and A. E. Gedik, “Experimental and Numerical Investigation of Laminar Flow Inside a Tube With Dimpled Fin 23rd Congress on Thermal Science And Technology with International Participation (Ulibtk 2021) 8-10 September, 2021 http://ulibtk2021.gantep.edu.tr/?dil=en Gaziantep, Turkey.”
  • F. Ahmed, et al. “Numerical investigation of the thermo-hydraulic performance of water-based nanofluids in a dimpled channel flow using Al2O3, CuO, and hybrid Al2O3–CuO as nanoparticles,” Heat Transf., vol. 50, no. 5, pp. 5080–5105, 2021.
  • S. Eiamsa-ard, K. Wongcharee, K. Kunnarak, M. Kumar, and V. Chuwattabakul, “Heat transfer enhancement of TiO2-water nanofluid flow in dimpled tube with twisted tape insert,” Heat Mass Transf. Und Stoffuebertragung, vol. 55, no. 10, pp. 2987–3001, 2019. DOI: 10.1007/s00231-019-02621-1.
  • S. Suresh, M. Chandrasekar, and P. Selvakumar, “Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under laminar flow in a helically dimpled tube,” Heat Mass Transf. Und Stoffuebertragung, vol. 48, no. 4, pp. 683–694, 2012. DOI: 10.1007/s00231-011-0917-2.
  • M. Deymi-Dashtebayaz, et al., “Thermo-hydraulic analysis and optimization of CuO/water nanofluid inside helically dimpled heat exchangers,” J. Therm. Anal. Calorim., vol. 143, pp. 4009–4024, 2021.
  • H. K. Pazarlıoğlu, M. Gürdal, K. Arslan, and E. Gedik, “Numerical investigation on heat transfer and flow behaviours of nio/h2o nanofluid flowing in dimpled tube.”
  • T. Hayat, M. Rashid, and A. Alsaedi, “MHD convective flow of magnetite-Fe3O4 nanoparticles by curved stretching sheet,” Results Phys., vol. 7, pp. 3107–3115, 2017.
  • K. M. Armijo 31 May , et al., “Magnetic field flow phenomena in a falling particle receiver,” in AIP Conference Proceedings Cape Town, South Africa, 2016, vol. 1734, no. 1, p. 30004 doi:https://doi.org/10.1063/1.4949056.
  • D. J. Huang, et al. “Spin and orbital magnetic moments of F e 3 O 4,” Phys. Rev. Lett., vol. 93, no. 7, pp. 77204, 2004.
  • M. Goharkhah, A. Salarian, M. Ashjaee, and M. Shahabadi, “Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field,” Powder Technol., vol. 274, pp. 258–267, Apr. 2015. DOI: 10.1016/J.POWTEC.2015.01.031.
  • A. Bejan, Convection Heat Transfer. Newyork, USA: John wiley \& sons, 2013.
  • F. P. Incropera, A. S. Lavine, T. L. Bergman, and D. P. DeWitt, Principles of Heat and Mass Transfer. Newyork, USD: Wiley, 2013.
  • Y. Cengel, Heat and Mass Transfer: Fundamentals and Applications. Newyork, USD: McGraw-Hill Higher Education, 2014.
  • Y. A. Çengel and A. J. Ghajar, Heat and Mass Transfer Fundamentals and Applications. Fifth. Newyork, USD: McGraw Hill, 2011.
  • R. B. Abernethy, R. P. Benedict, and R. B. Dowdell, “ASME measurement uncertainty,” 1985.
  • L. Kirkup and R. B. Frenkel, An Introduction to Uncertainty in Measurement: Using the GUM (Guide to the Expression of Uncertainty in Measurement). Cambridge, United Kingdom: Cambridge University Press, 2006.
  • R. K. Shah and A. L. London, Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data 1st Edition (Amsterdam,Netherlands: Elsevier) . 1978.
  • A. F. Mills, Basic Heat and Mass Transfer 2nd Edition . New Jersey: Prentice hall, 1999.
  • Y. Chudnovsky and A. Kozlov, Development and Field Trial of Dimpled-tube Technology for Chemical Industry Process Heaters (Des Plaines: Energy Utilization Center/Process Heating Gas Technology Institute). 2006.
  • M. Z. U. Khan, et al., “Investigation of heat transfer in dimple-protrusion micro-channel heat sinks using copper oxide nano-additives,” Case Stud. Therm. Eng., vol. 28, pp. 101374, Dec. 2021. DOI: 10.1016/J.CSITE.2021.101374.
  • W. Liu, Z. C. Liu, H. Jia, A. W. Fan, and A. Nakayama, “Entransy expression of the second law of thermodynamics and its application to optimization in heat transfer process,” Int. J. Heat Mass Transf., vol. 54, no. 13–14, pp. 3049–3059, Jun. 2011. DOI: 10.1016/J.IJHEATMASSTRANSFER.2011.02.041.
  • X. Zhang, Z. Liu, and W. Liu, “Numerical studies on heat transfer and flow characteristics for laminar flow in a tube with multiple regularly spaced twisted tapes,” Int. J. Therm. Sci., vol. 58, pp. 157–167, Aug. 2012. DOI: 10.1016/J.IJTHERMALSCI.2012.02.025.
  • L. Wei, L. Zhichun, M. Tingzhen, and G. Zengyuan, “Physical quantity synergy in laminar flow field and its application in heat transfer enhancement,” Int. J. Heat Mass Transf., vol. 52, no. 19–20, pp. 4669–4672, Sep. 2009. DOI: 10.1016/J.IJHEATMASSTRANSFER.2009.02.018.
  • Z. Y. Guo, W. Q. Tao, and R. K. Shah, “The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer,” Int. J. Heat Mass Transf., vol. 48, no. 9, pp. 1797–1807, Apr. 2005. DOI: 10.1016/J.IJHEATMASSTRANSFER.2004.11.007.
  • W. Q. Tao, Z. Y. Guo, and B. X. Wang, “Field synergy principle for enhancing convective heat transfer––its extension and numerical verifications,” Int. J. Heat Mass Transf., vol. 45, no. 18, pp. 3849–3856, Aug. 2002. DOI: 10.1016/S0017-9310(02)00097-2.
  • J. Liu, S. Chen, M. Gan, and Q. Chen, “Heat transfer and flow resistance characteristics inside an innovative vortex enhanced tube,” Appl. Therm. Eng., vol. 144, pp. 702–710, Nov. 2018. DOI: 10.1016/J.APPLTHERMALENG.2018.04.082.
  • L. Zhang, W. Xiong, J. Zheng, Z. Liang, and S. Xie, “Numerical analysis of heat transfer enhancement and flow characteristics inside cross-combined ellipsoidal dimple tubes,” Case Stud. Therm. Eng., vol. 25, pp. 100937, Jun. 2021. DOI: 10.1016/J.CSITE.2021.100937.
  • L. Sha, Y. Ju, and H. Zhang, “The influence of the magnetic field on the convective heat transfer characteristics of Fe3O4/water nanofluids,” Appl. Therm. Eng., vol. 126, pp. 108–116, Nov. 2017. DOI: 10.1016/J.APPLTHERMALENG.2017.07.150.
  • A. Noghrehabadi and R. Pourrajab, “Experimental investigation of forced convective heat transfer enhancement of γ-Al 2 O 3 /water nanofluid in a tube †,” J. Mech. Sci. Technol., vol. 30, no. 2, pp. 943–952, 2016. DOI: 10.1007/s12206-016-0148-z.
  • M. Nuim Labib, M. J. Nine, H. Afrianto, H. Chung, and H. Jeong, “Numerical investigation on effect of base fluids and hybrid nanofluid in forced convective heat transfer,” Int. J. Therm. Sci., vol. 71, pp. 163–171, Sep. 2013. DOI: 10.1016/J.IJTHERMALSCI.2013.04.003.
  • C. Qi, L. Liang, and Z. Rao, “Study on the flow and heat transfer of liquid metal based nanofluid with different nanoparticle radiuses using two-phase lattice Boltzmann method,” Int. J. Heat Mass Transf., vol. 94, pp. 316–326, Mar. 2016. DOI: 10.1016/J.IJHEATMASSTRANSFER.2015.11.068.
  • L. S. Sundar and K. V. Sharma, “AN EXPERIMENTAL STUDY ON HEAT TRANSFER AND FRICTION FACTOR OF AL2O3 NANOFLUID,” J. Mech. Eng. Sci. , vol. 1, pp. 99–112, 2011. DOI:10.15282/jmes.1.2011.9.0009.
  • M. Gürdal, H. K. Pazarlioglu, M. Tekir, K. Arslan, and E. Gedik, “Numerical investigation on turbulent flow and heat transfer characteristics of ferro-nanofluid flowing in dimpled tube under magnetic field effect,” Appl. Therm. Eng. 200 , pp. 117655, 2021.
  • E. Esmaeili, R. Ghazanfar Chaydareh, and S. A. Rounaghi, “The influence of the alternating magnetic field on the convective heat transfer properties of Fe3O4-containing nanofluids through the Neel and Brownian mechanisms,” Appl. Therm. Eng., vol. 110, pp. 1212–1219, Jan. 2017. DOI: 10.1016/J.APPLTHERMALENG.2016.09.014.
  • F. Fan, et al., “A novel thermal efficiency analysis on the thermo-hydraulic performance of nanofluids in an improved heat exchange system under adjustable magnetic field,” Appl. Therm. Eng., vol. 179, pp. 115688, Oct. 2020. DOI: 10.1016/j.applthermaleng.2020.115688.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.