Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 36, 2023 - Issue 3
247
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Heat transfer and fluid flow analysis over the microscale backward-facing step using βGa2O3 nanoparticles

ORCID Icon &
Pages 358-375 | Received 23 Sep 2021, Accepted 31 Jan 2022, Published online: 17 Feb 2022

References

  • A. Berber, M. Gürdal, and K. Bağırsakçı, “Prediction of heat transfer in a circular tube with aluminum and Cr-Ni alloy pins using artificial neural network,” Ex. Heat. Transfer, vol. 34, no. 6, pp.547–563, 2021. DOI: 10.1080/08916152.2020.1793826.
  • M. Ashham, H. K. Sharaf, K. Salman, and S. Salman, “Simulation of heat transfer in a heat exchanger tube with inclined vortex rings inserts,” Int. J. App.l Eng., vol. 12, pp.9605–9613, 2017.
  • S. D. Barewar, and S. S. Chougule, “Heat transfer characteristics and boiling heat transfer performance of novel Ag/ZnO hybrid nanofluid using free surface jet impingement,” Exp. Heat Transfer., vol. 34, no. 6, pp.531–546, 2021. DOI: 10.1080/08916152.2020.1792587.
  • E. I. Eid, A. A. Al-Nagdy, and R. A. Khalaf-Allah, “Nucleate pool boiling heat transfer above laser machining heating surfaces with different micro-cavity geometric shape for water-aluminum oxide nanofluid,“ In Experimental Heat Transfer., 2021. DOI: 10.1080/08916152.2021.1946207.
  • H. K. Sharaf, et al., “The effects of the viscosity and density on the natural frequency of the cylindrical nanoshells conveying viscous fluid,” Eur. Phys. J . Plus., vol. 136, no. 1, pp.1–19, 2021. DOI: 10.1140/epjp/s13360-020-01026-y.
  • Q. Peng, et al., “Experimental and numerical investigation of a micro-thermophotovoltaic system with different backward-facing steps and wall thicknesses,” Energy, vol. 173, pp. 540–547, 2019. DOI: 10.1016/j.energy.2019.02.093.
  • H. I. Abu-Mulaweh, “A review of research on laminar mixed convection flow over backward-and forward-facing steps,” Int. J. Therm. Sci., vol. 42, no. 9, pp.897–909, 2003. DOI: 10.1016/S1290-0729(03)00062-0.
  • S. Salman, A. R. Abu Talib, S. Saadon, and M. H. Sultan, “Hybrid nanofluid flow and heat transfer over backward and forward steps: a review,” Powder. Technol., vol. 363, pp. 448–472, 2020. DOI: 10.1016/j.powtec.2019.12.038.
  • L. Chen, K. Asai, T. Nonomura, G. Xi, and T. Liu, “A review of backward-facing step (BFS) flow mechanisms, heat transfer and control,” Therm. Sci. Eng. Prog., vol. 6, pp.194–216, 2018. DOI: 10.1016/j.tsep.2018.04.004.
  • A. R. Abu Talib, and A. K. Hilo, “Fluid flow and heat transfer over corrugated backward facing step channel,” Case. Stud. Therm. Eng., vol. 24, pp.100862, 2021.
  • R. K. Ajeel, K. Sopian, R. Zulkifli, S. N. Fayyadh, and A. K. Hilo, “Assessment and analysis of binary hybrid nanofluid impact on new configurations for curved-corrugated channel,” Adv. Powder. Technol, vol. 32, no. 10, pp.3869–3884, 2021. DOI: 10.1016/j.apt.2021.08.041.
  • S. Mukherjee and S. Paria, “Preparation and stability of nanofluids-a review,” J. Mech. Civ. Eng., vol. 9, no. 2, pp.63–69, 2013. DOI: 10.9790/1684-0926369.
  • D. Wen, G. Lin, S. Vafaei, and K. Zhang, “Review of nanofluids for heat transfer applications,” Particuology, vol. 7, no. 2, pp.141–150, 2009. DOI: 10.1016/j.partic.2009.01.007.
  • H. I. Abu-Mulaweh, T. S. Chen, and B. F. Armaly, “Turbulent mixed convection flow over a backward-facing step––the effect of the step heights,” Int. J. Heat Fluid. Flow., vol. 23, no. 6, pp.758–765, 2002. DOI: 10.1016/S0142-727X(02)00191-1.
  • A. Hilo, A. R. Abu Talib, S. R. Nfawa, M. T. H. Sultan, and M. F. A. Hamid, “Review of improvements on heat transfer using nanofluids via corrugated facing step,” Int. J. Eng. Technol, vol. 7, no. 4.13, pp.160–169, 2018. DOI: 10.14419/ijet.v7i4.13.21350.
  • S. S. Thakur, S. S. Chandel, A. Kakoria, and S. Sinha- Ray, “Enhancement in pool boiling heat transfer of ethanol and nanofluid on novel supersonic nanoblown nanofiber textured surface“, In Experimental Heat Transfer, 2021. DOI: 10.1080/08916152.2021.1919243.
  • A. Hilo, et al., “Heat transfer and thermal conductivity enhancement using graphene nanofluid: a review,” J. Adv. Res. Fluid. Mech. Therm. Sci., vol. 55, pp.74–87, 2019.
  • M. Behi, et al., “Experimental and numerical investigation on hydrothermal performance of nanofluids in micro-tubes,” Energy, vol. 193, pp.116658, 2020. DOI: 10.1016/j.energy.2019.116658.
  • H. Peng, W. Guo, and M. Li, “Thermal-hydraulic and thermodynamic performances of liquid metal based nanofluid in parabolic trough solar receiver tube,” Energy, vol. 192, pp. 116564, 2020. DOI: 10.1016/j.energy.2019.116564.
  • A. K. Hilo, A. R. A. Abu Talib, A. A. Iborra, M. T. H. Sultan, and M. F. A. Hamid, “Experimental study of nanofluids flow and heat transfer over a backward-facing step channel,” Powder. Technol., vol. 372, pp. 497–505, 2020. DOI: 10.1016/j.powtec.2020.06.013.
  • F. Mashali, F. Alkhaldi, and G. Mirshekari, “Nanodiamond Colloids heat transfer behavior in electronics thermal management – an experimental study“, In Experimental Heat Transfer, 2021. DOI: 10.1080/08916152.2021.1947418.
  • M. Amjadian, H. Safarzadeh, M. Bahiraei, S. Nazari, and B. Jaberi, “Heat transfer characteristics of impinging jet on a hot surface with constant heat flux using Cu2O–water nanofluid: an experimental study,” Int. Commun. Heat. Mass. Transfer., vol. 112, pp. 104509, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104509.
  • Z. Mehrez, M. Bouterra, A. El Cafsi, A. Belghith, and P. Le Quere, “The influence of the periodic disturbance on the local heat transfer in separated and reattached flow,” Heat. Mass. Transfer., vol. 46, no. 1, pp.107–112, 2009. DOI: 10.1007/s00231-009-0548-z.
  • A. Keating, U. Piomelli, K. Bremhorst, and S. Nešić, “Large-eddy simulation of heat transfer downstream of a backward-facing step,” J. Turbulence, vol. 5, no. 1, pp.020, 2004. DOI: 10.1088/1468-5248/5/1/020.
  • R. V. Avancha and R. H. Pletcher, “Large eddy simulation of the turbulent flow past a backward-facing step with heat transfer and property variations,” Int. J. Heat. Fluid. Flow., vol. 23, no. 5, pp.601–614, 2002. DOI: 10.1016/S0142-727X(02)00156-X.
  • H. I. Abu-Mulaweh, B. F. Armaly, and T. S. Chen, “Turbulent mixed convection flow over a backward-facing step,” Int. J. Heat. Mass. Transf., vol. 44, no. 14, pp.2661–2669, 2001. DOI: 10.1016/S0017-9310(00)00328-8.
  • J. H. Nie and B. F. Armaly, “Reverse flow regions in three-dimensional backward-facing step flow,” Int. J. Heat. Mass. Transf., vol. 47, no. 22, pp.4713–4720, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.05.027.
  • A. K. Hilo, A. R. Abu Talib, A. A. Iborra, M. T. H. Sultan, and M. F. A. Hamid, “Effect of corrugated wall combined with backward-facing step channel on fluid flow and heat transfer,” Energy, vol. 190, pp.116294, 2020. DOI: 10.1016/j.energy.2019.116294.
  • A. Gavasane, A. Agrawal, and U. Bhandarkar, “Study of rarefied gas flows in backward facing micro-step using Direct Simulation Monte Carlo,” Vacuum, vol. 155, pp. 249–259, 2018. DOI: 10.1016/j.vacuum.2018.06.014.
  • T. Y. Hsieh, Z. C. Hong, and Y. C. Pan, “Flow characteristics of three-dimensional microscale backward-facing step flows,” Numer. Heat. Transfer. Part A, vol. 57, no. 5, pp.331–345, 2010. DOI: 10.1080/10407780903582992.
  • A. S. Kherbeet, H. A. Mohammed, B. H. Salman, H. E. Ahmed, and O. A. Alawi, “Experimental and numerical study of nanofluid flow and heat transfer over microscale backward-facing step,” Int. J. Heat. Mass. Transf., vol. 79, pp. 858–867, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.08.074.
  • A. S. Kherbeet, et al., “Experimental study of nanofluid flow and heat transfer over microscale backward-and forward-facing steps,” Exp. Therm. Fluid. Sci., vol. 65, pp.13–21, 2015. DOI: 10.1016/j.expthermflusci.2015.02.023.
  • A. S. Kherbeet, H. A. Mohammed, K. M Munisamy, and B. H. Salman, “Effect of base fluid on mixed convection nanofluid flow over microscale backward-facing step,” J. Comput. Theor. Nanosci., vol. 12, no. 10, pp.3076–3089, 2015. DOI: 10.1166/jctn.2015.4083.
  • A. S. Kherbeet, H. A. Mohammed, and B. H. Salman, “The effect of nanofluids flow on mixed convection heat transfer over microscale backward-facing step,” Int. J. Heat. Mass. Transf., vol. 55, no. 21–22, pp.5870–5881, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.05.084.
  • D. Yang, B. Sun, T. Xu, B. Liu, and H. Li, “Experimental and numerical study on the flow and heat transfer characteristic of nanofluid in the recirculation zone of backward-facing step microchannels,” Appl. Therm. Eng., vol. 199, pp.117527, 2021. DOI: 10.1016/j.applthermaleng.2021.117527.
  • S. Salman, et al., “Numerical study on the turbulent mixed convective heat transfer over 2d microscale backward-facing step,” CFD Letters, vol. 11, pp. 31–45, 2019.
  • C. J. Szwejkowski, et al., “Size effects in the thermal conductivity of gallium oxide (β-Ga2O3) films grown via open-atmosphere annealing of gallium nitride,” J. Appl. Phys., vol. 117, no. 8, pp.084308, 2015. DOI: 10.1063/1.4913601.
  • H. A. Mohammed and Y. K. Salman, “Experimental investigation of mixed convection heat transfer for thermally developing flow in a horizontal circular cylinder,” Appl. Therm. Eng., vol. 27, no. 8–9, pp.1522–1533, 2007. DOI: 10.1016/j.applthermaleng.2006.09.023.
  • J. P. Holman. Experimental Methods for Engineers. 8th ed. New York, McGraw-Hill, 2012.
  • D. B. Spalding, “Mathematical modeling of fluid-mechanics, heat-transfer and chemical-reaction processes: a lecture course,” NASA STI/Recon Technical Report No. 81, 1980.
  • V. Yakhot and S. A. Orszag, “Renormalization group analysis of turbulence. I. Basic theory,” J. Sci. Comput., vol. 1, no. 1, pp.3–51, 1986. DOI: 10.1007/BF01061452.
  • C. Y. Chow. “An Introduction to Computational Fluid Mechanics,“ vol. 12, pp. 37–41. New York, 1979.
  • K. Benaissa, et al., “Predicting initial erosion during the hole erosion test by using turbulent flow CFD simulation,” Appl. Math. Model., vol. 36, no. 8, pp.3359–3370, 2012. DOI: 10.1016/j.apm.2011.04.036.
  • J. O. Hinze and M. S. Uberoi, “Turbulence,” J. Appl. Mech., vol. 27, no. 3, pp.601, 1960. DOI: 10.1115/1.3644063.
  • H. Alipour, A. Karimipour, M. R. Safaei, D. T. Semiromi, and O. A. Akbari, “Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel,” Physica. E. Low. Dimens. Syst. Nanostruct., vol. 88, pp. 60–76, 2017. DOI: 10.1016/j.physe.2016.11.021.
  • S. Suresh, K. P. Venkitaraj, P. Selvakumar, and M. Chandrasekar, “Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer,” Exp. Therm. Fluid. Sci., vol. 38, pp. 54–60, 2012. DOI: 10.1016/j.expthermflusci.2011.11.007.
  • S. Suresh, M. Chandrasekar, and S. C. Sekhar, “Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube,” Exp. Therm. Fluid. Sci., vol. 35, no. 3, pp.542–549, 2011. DOI: 10.1016/j.expthermflusci.2010.12.008.
  • G. A. Sheikhzadeh, F. N. Barzoki, A. A. A. Arani, and F. Pourfattah, “Wings shape effect on behavior of hybrid nanofluid inside a channel having vortex generator,” Heat Mass Transf., vol. 55, no. 7, pp.1969–1983, 2019. DOI: 10.1007/s00231-018-2489-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.