Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 36, 2023 - Issue 4
343
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Systematic approach to estimate non-uniform heat generation rate in heat transfer problems using liquid crystal thermography and inverse methodology

&
Pages 473-508 | Received 05 Nov 2021, Accepted 14 Feb 2022, Published online: 22 Mar 2022

References

  • J. Zueco, F. Alhama, and C. G. Fernandez, “Inverse determination of heat generation sources in two-dimensional homogeneous solids: application to orthotropic medium,” International Communications in Heat and Mass Transfer, vol. 33, no. 1, pp.49–55, 2006.DOI: 10.1016/j.icheatmasstransfer.2005.08.013.
  • K. Erhart, E. Divo and A. Kassab, “An inverse localized meshless technique for the determination of non-linear heat generation rates in living tissue,” in: 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 3587, 2008
  • C.-H. Huang and H.-C. Lo, “A three-dimensional inverse problem in estimating the internal heat flux of housing for high speed motors,” Applied Thermal Engineering, vol. 26, no. 14–15, pp.1515–1529, 2006.DOI: 10.1016/j.applthermaleng.2005.12.009.
  • C.-H. Huang and C.-Y. Huang, “An inverse problem in estimating simultaneously the effective thermal conductivity and volumetric heat capacity of biological tissue,” Applied Mathematical Modelling, vol. 31, no. 9, pp.1785–1797, 2007.DOI: 10.1016/j.apm.2006.06.002.
  • S. Parthasarathy and C. Balaji, “Estimation of parameters in multi-mode heat transfer problems using bayesian inference–Effect of noise and a priori,” International Journal of Heat and Mass Transfer, vol. 51, no. 9–10, pp.2313–2334, 2008.DOI: 10.1016/j.ijheatmasstransfer.2007.08.031.
  • F.-B. Liu, “A modified genetic algorithm for solving the inverse heat transfer problem of estimating plan heat source,” International Journal of Heat and Mass Transfer, vol. 51, no. 15–16, pp.3745–3752, 2008.DOI: 10.1016/j.ijheatmasstransfer.2008.01.002.
  • O. Cortés, G. Urquiza, and J. A. Hernández,“Inverse heat transfer using Levenberg-Marquardt and particle swarm optimization methods for heat source estimation,“ in Applied Mechanics and Materials, Urriolagoitia-Calderón, G., Hernández-Gómez, L. H, Toledo-Velázquez, M., (Eds.), Switzerland: Trans Tech Publ, 2009, 15, 35–40.
  • C. Balaji and T. Padhi, “A new ANN driven MCMC method for multi-parameter estimation in two-dimensional conduction with heat generation,” International Journal of Heat and Mass Transfer, vol. 53, no. 23–24, pp.5440–5455, 2010.DOI: 10.1016/j.ijheatmasstransfer.2010.05.064.
  • C.-H. Huang and W.-L. Chang 2010, “An inverse problem in estimating the volumetric heat generation for a three-dimensional encapsulated chip,” Journal of Electronic Packaging, 132 (1), 9.
  • N. Gnanasekaran and C. Balaji, “An inexpensive technique to simultaneously determine total emissivity and natural convection heat transfer coefficient from transient experiments,” Experimental Heat Transfer, vol. 23, no. 3, pp.235–258, 2010.DOI: 10.1080/08916150903564788.
  • -C.-C. Wang and C.-Y. Yang, “Inverse method in simultaneously estimate internal heat generation and root temperature of the T-shaped fin,” International Communications in Heat and Mass Transfer, vol. 37, no. 9, pp.1312–1320, 2010.DOI: 10.1016/j.icheatmasstransfer.2010.07.004.
  • V. M. Luchesi and R. T. Coelho, “An inverse method to estimate the moving heat source in machining process,” Applied Thermal Engineering, vol. 45, pp. 64–78, 2012.DOI: 10.1016/j.applthermaleng.2012.04.014.
  • P. F. de Sousa, V. L. Borges, I. C. Pereira, M. B. da Silva, and G. Guimarães, “Estimation of heat flux and temperature field during drilling process using dynamic observers based on Green’s function,” Applied Thermal Engineering, vol. 48, pp. 144–154, 2012.DOI: 10.1016/j.applthermaleng.2012.04.061.
  • D. C. Knupp, C. P. Naveira-Cotta, H. R. Orlande, and R. M. Cotta, “Experimental identification of thermophysical properties in heterogeneous materials with integral transformation of temperature measurements from infrared thermography,” Experimental Heat Transfer, vol. 26, no. 1, pp.1–25, 2013.DOI: 10.1080/08916152.2011.631079.
  • K. Das, R. Singh, and S. C. Mishra, “Numerical analysis for determination of the presence of a tumor and estimation of its size and location in a tissue,” Journal of Thermal Biology, vol. 38, no. 1, pp.32–40, 2013.DOI: 10.1016/j.jtherbio.2012.10.003.
  • K. Das and S. C. Mishra, “Non-invasive estimation of size and location of a tumor in a human breast using a curve fitting technique,” International Communications in Heat and Mass Transfer, vol. 56, pp. 63–70, 2014.DOI: 10.1016/j.icheatmasstransfer.2014.04.015.
  • T. Hotta, C. Balaji, and S. Venkateshan, “Experiment driven ANN-GA based technique for optimal distribution of discrete heat sources under mixed convection,” Experimental Heat Transfer, vol. 28, no. 3, pp.298–315, 2015.DOI: 10.1080/08916152.2013.871867.
  • E. Saniei, S. Setayeshi, M. E. Akbari, and M. Navid, “Parameter estimation of breast tumour using dynamic neural network from thermal pattern,” Journal of Advanced Research, vol. 7, no. 6, pp.1045–1055, 2016.DOI: 10.1016/j.jare.2016.05.005.
  • R. Das and B. Kundu, “Prediction of heat generation in a porous fin from surface temperature,” Journal of Thermophysics and Heat Transfer, vol. 31, no. 4, pp.781–790, 2017.DOI: 10.2514/1.T5098.
  • R. Hatwar and C. Herman, “Inverse method for quantitative characterisation of breast tumours from surface temperature data,” International Journal of Hyperthermia, vol. 33, no. 7, pp.741–757, 2017.DOI: 10.1080/02656736.2017.1306758.
  • M. Bahador, M. M. Keshtkar, and A. Zariee, “Numerical and experimental investigation on the breast cancer tumour parameters by inverse heat transfer method using genetic algorithm and image processing,” Sādhanā, vol. 43, no. 9, pp.1–10, 2018.DOI: 10.1007/s12046-018-0900-4.
  • H. Kumar, S. Kumar, N. Gnanasekaran, and C. Balaji, “A Markov chain monte Carlo-Metropolis Hastings approach for the simultaneous estimation of heat generation and heat transfer coefficient from a teflon cylinder,” Heat Transfer Engineering, vol. 39, no. 4, pp.339–352, 2018.DOI: 10.1080/01457632.2017.1305823.
  • S. Kumar, P. S. Jakkareddy, and C. Balaji, “A novel method to detect hot spots and estimate strengths of discrete heat sources using liquid crystal thermography,” International Journal of Thermal Sciences, vol. 154, pp. 106377, 2020.DOI: 10.1016/j.ijthermalsci.2020.106377.
  • S. C. Godi, S. Abraham, A. Pattamatta, and C. Balaji, “Evaluation of candidate strategies for the estimation of local heat transfer coefficient from wall jets,” Experimental Heat Transfer, vol. 33, no. 1, pp.40–63, 2020.DOI: 10.1080/08916152.2019.1570983.
  • N. B. D. Do, et al., “Thermal management of an interventional medical device with double layer encapsulation,” Experimental Heat Transfer, pp. 1–18, 2021.DOI: 10.1080/08916152.2021.1946208.
  • A. Berber, M. Gürdal, and K. Bağrsakç, “Prediction of heat transfer in a circular tube with aluminum and Cr-Ni alloy pins using artificial neural network,” Experimental Heat Transfer, vol. 34, no. 6, pp.547–563, 2021.DOI: 10.1080/08916152.2020.1793826.
  • V. Mathew and T. K. Hotta, “Experimental investigation of substrate board orientation effect on the optimal distribution of IC chips under forced convection,” Experimental Heat Transfer, vol. 34, no. 6, pp.564–585, 2021.DOI: 10.1080/08916152.2020.1793827.
  • M. Behle, K. Schulz, W. Leiner, and M. Fiebig, “Color-based image processing to measure local temperature distributions by wide-band liquid crystal thermography,” Applied Scientific Research, vol. 56, no. 2–3, pp.113–143, 1996.DOI: 10.1007/BF02249377.
  • N. Abdullah, A. R. A. Talib, A. A. Jaafar, M. A. M. Salleh, and W. T. Chong, “The basics and issues of thermochromic liquid crystal calibrations,” Experimental Thermal and Fluid Science, vol. 34, no. 8, pp.1089–1121, 2010.DOI: 10.1016/j.expthermflusci.2010.03.011.
  • G. Grewal, M. Bharara, J. Cobb, V. Dubey, and D. Claremont, “A novel approach to thermochromic liquid crystal calibration using neural networks,“ San Francisco, California, 2006, pp. 1918–1924, 17, DOI:10.1088/0957-0233/17/7/033.
  • MATLAB (R2019a), The MathWorks Inc, U.S.A., URL www.mathworks.com/products/matlab, 2019 .
  • P. S. Jakkareddy and C. Balaji, “A non-intrusive technique to determine the spatially varying heat transfer coefficients in a flat plate with flush mounted heat sources,” International Journal of Thermal Sciences, vol. 131, pp. 144–159, 2018.DOI: 10.1016/j.ijthermalsci.2018.03.009.
  • G. K. Marri and C. Balaji, “Liquid crystal thermography based study on melting dynamics and the effect of mushy zone constant in numerical modeling of melting of a phase change material,” International Journal of Thermal Sciences, vol. 171, pp. 107176, 2022.DOI: 10.1016/j.ijthermalsci.2021.107176.
  • S. P. Venkateshan, Mechanical Measurements, Ane Books. New Delhi: Springer, 2009.
  • COMSOL, Multiphysics V.5.4., COMSOL AB., Stockholm, Sweden, URL www.comsol.com., 2018 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.