Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 36, 2023 - Issue 5
463
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The effect of MHD flow on hydrothermal characteristics of ferro-nano-fluid in circular pipe

, , , ORCID Icon, &
Pages 617-631 | Received 01 Dec 2021, Accepted 04 Apr 2022, Published online: 18 Apr 2022

References

  • S. U. S. Choi, and J. A. Eastman, IL, United States. 1995. Enhancing thermal conductivity of fluids with nanoparticles Conference: 1995 International mechanical engineering congress and exhibition, 10 January 1995, San Francisco.
  • A. B. Jaffe, R. G. Newell, and R. N. Stavins, “Economics of energy efficiency,” Encycl. Energy, vol. 2, pp. 79–90, 2004.
  • E. I. Eid, A. A. Al-Nagdy, and R. A. Khalaf-Allah, “Nucleate pool boiling heat transfer above laser machining heating surfaces with different micro-cavity geometric shape for water-aluminum oxide nanofluid,” 10.1080/08916152.2021.1946207, 2021. DOI:10.1080/0891/6152.2021.1946207.
  • S. M. Shankara and R. N. Hegde, “Investigations on the effect of disturbed flow using differently configured turbulators and Alumina nanofluid as a coolant in a double tube heat exchanger,” Exp. Heat Transf, vol. 00, pp. 1–26, 2021. DOI: 10.1080/08916152.2020.1860159.
  • F. Mohamadian, L. Eftekhar, and Y. Haghighi Bardineh, “Applying GMDH artificial neural network to predict dynamic viscosity of an antimicrobial nanofluid,” Nanomedicine J, vol. 5, pp. 217–221, 2018.
  • M. H. Al-Rashed, G. Dzido, M. Korpyś, J. Smołka, and J. Wójcik, “Investigation on the CPU nanofluid cooling,” Microelectron. Reliab, vol. 63, pp. 159–165, 2016. DOI: 10.1016/j.microrel.2016.06.016.
  • M. Bahiraei and S. Heshmatian, “Application of a novel biological nanofluid in a liquid block heat sink for cooling of an electronic processor: thermal performance and irreversibility considerations,” Energy Convers. Manag, vol. 149, pp. 155–167, 2017. DOI: 10.1016/j.enconman.2017.07.020.
  • H. K. PAZARLIOĞLU and M. TEKİR, “Impact of Fe3O4/water on natural convection in square enclosure,” Eur. J. Sci. Technol. no. 28, pp. 675–683, 2021. DOI:10.31590/ejosat.1010066.
  • M. M. Tawfik, “Experimental studies of nanofluid thermal conductivity enhancement and applications: a review,” Renew. Sustain. Energy Rev, vol. 75, no. November, pp. 1239–1253, 2016. DOI: 10.1016/j.rser.2016.11.111.
  • L. S. Sundar, M. K. Singh, and A. C. M. Sousa, “Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications,” Int. Commun. Heat Mass Transf, vol. 44, pp. 7–14, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.02.014.
  • L. S. Sundar, M. K. Singh, and A. C. M. Sousa, “Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid,” Int. Commun. Heat Mass Transf, vol. 49, pp. 17–24, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.08.026.
  • S. Laurent, C. Burtea, C. Thirifays, U. O. Häfeli, and M. Mahmoudi, “Crucial ignored parameters on nanotoxicology: the importance of toxicity assay modifications and ‘cell vision,’” PLoS One, vol. 7, no. 1, pp.e29997, 2012. DOI: 10.1371/journal.pone.0029997.
  • A. A. Hussien, M. Z. Abdullah, and A.-N. Moh’d A, “Single-phase heat transfer enhancement in micro/minichannels using nanofluids: theory and applications,” Appl. Energy, vol. 164, pp. 733–755, 2016.
  • W. I. Liu, et al., “Laminar forced convection performance of non-Newtonian water-CNT/Fe3O4 nano-fluid inside a minichannel hairpin heat exchanger: effect of inlet temperature,” Powder Technol, vol. 354, pp. 247–258, 2019. DOI: 10.1016/j.powtec.2019.05.079.
  • M. Tekir, E. Taskesen, B. Aksu, E. Gedik, and K. Arslan, “Comparison of bi-directional multi-wave alternating magnetic field effect on ferromagnetic nanofluid flow in a circular pipe under laminar flow conditions,” Appl. Therm. Eng, vol. 179, pp. 115624, Oct. 2020. DOI: 10.1016/j.applthermaleng.2020.115624.
  • H. Yamaguchi, X.-R. Zhang, X.-D. Niu, and K. Yoshikawa, “Thermomagnetic natural convection of thermo-sensitive magnetic fluids in cubic cavity with heat generating object inside,” J. Magn. Magn. Mater, vol. 322, no. 6, pp.698–704, 2010. DOI: 10.1016/j.jmmm.2009.10.044.
  • H. Yamaguchi, X.-D. Niu, X.-R. Zhang, and K. Yoshikawa, “Experimental and numerical investigation of natural convection of magnetic fluids in a cubic cavity,” J. Magn. Magn. Mater, vol. 321, no. 22, pp.3665–3670, 2009. DOI: 10.1016/j.jmmm.2009.07.013.
  • M. Sheikholeslami and M. Gorji-Bandpy, “Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field,” Powder Technol, vol. 256, pp. 490–498, 2014. DOI: 10.1016/j.powtec.2014.01.079.
  • M. Sheikholeslami, et al., “Application of LBM in simulation of natural convection in a nanofluid filled square cavity with curve boundaries,” Powder Technol, vol. 247, pp. 87–94, 2013. DOI: 10.1016/j.powtec.2013.06.008.
  • M. H. Buschmann, “Critical review of heat transfer experiments in ferrohydrodynamic pipe flow utilising ferronanofluids,” Int. J. Therm. Sci, vol. 157, pp. 106426, Nov. 2020. DOI: 10.1016/J.IJTHERMALSCI.2020.106426.
  • J. Rudl, et al. “Laminar pipe flow with mixed convection under the influence of magnetic field”, Nanomater, Vol. 11, no. 3, pp. 824, 2021. Mar. 2021. DOI: 10.3390/NANO11030824.
  • L. S. Sundar, M. T. Naik, K. V. Sharma, M. K. Singh, and T. C. S. Reddy, “Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid,” Exp. Therm. Fluid Sci, vol. 37, pp. 65–71, 2012. DOI: 10.1016/j.expthermflusci.2011.10.004.
  • A. Malvandi and D. D. Ganji, “Magnetohydrodynamic mixed convective flow of Al2O3–water nanofluid inside a vertical microtube,” J. Magn. Magn. Mater, vol. 369, pp. 132–141, Nov. 2014. DOI: 10.1016/J.JMMM.2014.06.037.
  • Q. Li and Y. Xuan, “Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field,” Exp. Therm. Fluid Sci, vol. 33, no. 4, pp. 591–596, Apr. 2009. DOI: 10.1016/J.EXPTHERMFLUSCI.2008.12.003.
  • M. Lajvardi, et al. “Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect,” J. Magn. Magn. Mater, vol. 322, no. 21, pp. 3508–3513, 2010. DOI: 10.1016/j.jmmm.2010.06.054.
  • A. Ghofrani, M. H. Dibaei, A. H. Sima, and M. B. Shafii, “Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field,” Exp. Therm. Fluid Sci, vol. 49, pp. 193–200, 2013. DOI: 10.1016/j.expthermflusci.2013.04.018.
  • H. Naseem and H. Murthy, “A simple thermal diffusivity measurement technique for polymers and particulate composites,” Int. J. Heat Mass Transf, vol. 137, pp. 968–978, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.171.
  • S. Mei, C. Qi, M. Liu, F. Fan, and L. Liang, “Effects of paralleled magnetic field on thermo-hydraulic performances of Fe3O4-water nanofluids in a circular tube,” Int. J. Heat Mass Transf, vol. 134, pp. 707–721, May. 2019. DOI: 10.1016/J.IJHEATMASSTRANSFER.2019.01.088.
  • A. R. Abu Talib and S. Salman, “Heat transfer and fluid flow analysis over the microscale backward-facing step using β Ga2O3 nanoparticles,” Exp. Heat Transf, pp. 1–18, 2022. DOI: 10.1080/08916152.2022.2039328.
  • B. Fekadu, R. Kathiravan, and P. Saravanan, “Augmentation of pool boiling heat transfer characteristics using naphtha carbon soot nanoparticles–water based nanofluids,” Exp. Heat Transf, pp. 1–16, 2021. DOI: 10.1080/08916152.2021.1958108.
  • F. Mashali, F. Alkhaldi, and G. Mirshekari, “Nanodiamond Colloids heat transfer behavior in electronics thermal management–an experimental study,” Exp. Heat Transf, pp. 1–17, 2021. DOI: 10.1080/08916152.2021.1947418.
  • F. Xu, Q. Liu, and M. Shibahara, “Transient forced convective heat transfer of helium gas in a narrow tube heated by exponential time-varying heat source,” Exp. Heat Transf, pp. 1–20, 2021. DOI: 10.1080/08916152.2021.1926596.
  • H. Jafari Zandabad, L. Jahanshaloo, H. Aminfar, and M. Mohammadpourfard, “Experimental study of the effects of quadrupole magnetic field and hydro-thermal parameters on bubble departure diameter and frequency in a vertical annulus,” 10.1080/08916152.2021.1873877, 2021. DOI: 10.1080/0891/6152.2021.1873877.
  • A. Berber, M. Gürdal, and K. Bağırsakçı, “Prediction of heat transfer in a circular tube with aluminum and Cr-Ni alloy pins using artificial neural network,” Exp. Heat Transf, vol. 34, no. 6, pp. 89–95, 2020.
  • M. Attalla and H. M. Maghrabie, “An experimental study on heat transfer and fluid flow of rough plate heat exchanger using Al2O3/water nanofluid,” Exp. Heat Transf, vol. 33, no. 3, pp.261–281, 2020. DOI: 10.1080/08916152.2019.1625469.
  • M. Gürdal, et al., “Experimental investigation on thermo hydraulic performance of ferronanofluid flow in a dimpled tube under magnetic field effect,” Exp. Heat Transf, vol. 00, pp. 1–19, 2022. DOI: 10.1080/08916152.2022.2027575.
  • M. Gürdal, H. K. Pazarlıoğlu, M. Tekir, K. Arslan, and E. Gedik, “Numerical investigation on turbulent flow and heat transfer characteristics of ferro-nanofluid flowing in dimpled tube under magnetic field effect,” Appl. Therm. Eng, vol. 200, pp. 117655, 2022. DOI: 10.1016/j.applthermaleng.2021.117655.
  • S. Rasaee, A. Shahsavar, and K. Niazi, “Experimental assessment on convection heat transfer characteristics of aqueous magnetite ferrofluid in a rifled tube under a rotating magnetic field,” Int. Commun. Heat Mass Transf, vol. 129, no. October, pp. 105673, 2021. DOI: 10.1016/j.rser.2016.11.111.
  • M. Goharkhah, A. Salarian, M. Ashjaee, and M. Shahabadi, “Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field,” Powder Technol, vol. 274, pp. 258–267, Apr. 2015. DOI: 10.1016/J.POWTEC.2015.01.031.
  • M. Tekir, E. Taskesen, E. Gedik, K. Arslan, and B. Aksu, “Effect of constant magnetic field on Fe3O4-Cu/water hybrid nanofluid flow in a circular pipe,” Heat Mass Transf, vol. 1, pp. 1–11, Oct. 2021. DOI: 10.1007/S00231-021-03125-7.
  • K. Arslan and N. Onur, “Experimental investigation of flow and heat transfer in rectangular cross-sectioned duct with baffles mounted on the bottom surface with different inclination angles,” Heat Mass Transf. Und Stoffuebertragung, vol. 50, no. 2, pp. 169–181, Feb. 2014. DOI: 10.1007/S00231-013-1236-6/FIGURES/7.
  • R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci, vol. 1, no. 1, pp. 3–17, 1988. DOI: 10.1016/0894-1777(88)90043-X.
  • V. Gnielinski, “ VDI Heat Atlas, pp. 691–700. doi:10.1007/978-3-540-77877-6_34, 2010.
  • R. K. Shah and A. L. London, “Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data”, 1978. Los Angeles.
  • A. F. Mills. Basic Heat and Mass Transfer. Prentice hall, 1999.
  • F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass, vol. 6. Danvers, USA: JOHN WILEY & SONS . 2007.
  • M. Sheikholeslami, “CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion,” J. Mol. Liq, vol. 249, pp. 921–929, 2018. DOI: 10.1016/j.molliq.2017.11.118.
  • E. Esmaeili, R. Ghazanfar Chaydareh, and S. A. Rounaghi, “The influence of the alternating magnetic field on the convective heat transfer properties of Fe3O4-containing nanofluids through the Neel and Brownian mechanisms,” Appl. Therm. Eng, vol. 110, pp. 1212–1219, Jan. 2017. DOI: 10.1016/J.APPLTHERMALENG.2016.09.014.
  • M. Niknejadi, M. Afrand, A. Karimipour, A. Shahsavar, and A. H. M. Isfahani, “An experimental study on the cooling efficiency of magnetite–water nanofluid in a twisted tube exposed to a rotating magnetic field,” J. Therm. Anal. Calorim, vo. 146, no. 4, pp. 1893–1909, 2021.
  • A. Shahsavar, M. R. Salimpour, M. Saghafian, and M. B. Shafii, “Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes,” J. Mech. Sci. Technol, vol. 30, no. 2, pp.809–815, 2016. DOI: 10.1007/s12206-016-0135-4.
  • H. Kaya, K. Arslan, and N. Eltugral, “Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids,” Renew. Energy, vol. 122, pp. 329–338, 2018. DOI: 10.1016/j.renene.2018.01.115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.