Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 36, 2023 - Issue 6
185
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation of critical heat flux, pressure drop and heat transfer coefficient for the flow boiling in a horizontal lobed channel with R-123

, &
Pages 757-785 | Received 15 Oct 2021, Accepted 05 May 2022, Published online: 17 May 2022

References

  • B. Markal, A. Candan, and O. Aydin, “Flow boiling characteristics in a novel minichannel with a step on each corner,” Exp. Heat Transfer, vol. 33, no. 1, pp.1–17, 2020. DOI: 10.1080/08916152.2019.1569178.
  • J. G. Collier and J. R. Thome. Convective Boiling and Condensation. Oxford University Press, New York, 1994.
  • S. G. Kandlikar, “Development of a flow boiling map for subcooled and saturated flow boiling of different fluids inside circular tubes,” J Heat Transfer, vol. 113, no. 1, pp.190–200, 1991. DOI: 10.1115/1.2910524.
  • S. G. Kandlikar, “A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes,” J Heat Transfer, vol. 112, no. 1, pp.219–228, 1990. DOI: 10.1115/1.2910348.
  • S. G. Kandlikar, “Heat transfer characteristics in partial boiling, fully developed boiling, and significant void flow regions of subcooled flow boiling,” J Heat Transfer, vol. 120, no. 2, pp.395–401, 1998. DOI: 10.1115/1.2824263.
  • V. E. Schrock and L. M. Grossman, “Forced convection boiling in tubes,” Nucl Sci Eng, vol. 12, no. 4, pp.474–481, 1962. DOI: 10.13182/NSE62-A26094.
  • M. M. Shah, “A general correlation for heat transfer during subcooled boiling in pipes and annuli,” ASHRAE Transactions, vol. 83, pp. 202–217, 1977.
  • M. M. Shah, “Chart correlation for saturated boiling heat transfer: equations and further study,” ASHRAE Transactions, vol. 88, pp. 185–196, 1982.
  • K. E. Gungor and R. H. S. Winterton, “A general correlation for flow boiling in tubes and annuli,” Int J Heat Mass Transf, vol. 29, no. 3, pp.351–358, 1986. DOI: 10.1016/0017-9310(86)90205-X.
  • G. M. Lazarek and S. H. Black, “Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113,” Int J Heat Mass Transf, vol. 25, no. 7, pp.945–960, 1982. DOI: 10.1016/0017-9310(82)90070-9.
  • Z. Liu and R. H. S. Winterton, “A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation,” Int J Heat Mass Transf, vol. 34, no. 11, pp.2759–2766, 1991. DOI: 10.1016/0017-9310(91)90234-6.
  • S. M. Ghiaasiaan. Two-phase Flow, Boiling, and Condensation: In Conventional and Miniature Systems. : Cambridge University Press, New York, 2007.
  • S. Huang, et al., “Prediction of dryout-type CHF for rod bundle in natural circulation loop under motion condition,” Nucl Eng Technol, vol. 52, no. 4, pp.721–733, 2020. DOI: 10.1016/j.net.2019.10.002.
  • R. Ali and B. Palm, “Dryout characteristics during flow boiling of R134a in vertical circular minichannels,” Int J Heat Mass Transf, vol. 54, no. 11–12, pp.2434–2445, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.02.018.
  • C. N. Chen, J. T. Han, T. C. Jen, L. Shao, and W. W. Chen, “Experimental study on critical heat flux characteristics of R134a flow boiling in horizontal helically-coiled tubes,” Int J Therm Sci, vol. 50, no. 2, pp.169–177, 2011. DOI: 10.1016/j.ijthermalsci.2010.10.002.
  • P. N. Tank, B. K. Hardik, A. Sridharan, and S. V. Prabhu, “Pressure drop, local heat transfer coefficient, and critical heat flux of DNB type for flow boiling in a horizontal straight tube with R-123,” Heat and Mass Transf, vol. 57, no. 2, pp. 223–250, 2020. DOI:10.1007/s00231-020-02935-5.
  • C. H. Lee and I. Mudawwar, “A mechanistic critical heat flux model for subcooled flow boiling based on local bulk flow conditions,” Int J Multiph Flow, vol. 14, no. 6, pp.711–728, 1988. DOI: 10.1016/0301-9322(88)90070-5.
  • J. E. Galloway and I. Mudawar, “CHF mechanism in flow boiling from a short heated wall. I: examination of near-wall conditions with the aid of photomicrography and high-speed video imaging,” Int J Heat Mass Transf, vol. 36, no. 10, pp.2511–2526, 1993. DOI: 10.1016/S0017-9310(05)80190-5.
  • J. M. Le Corre, S. C. Yao, and C. H. Amon, “A mechanistic model of critical heat flux under subcooled flow boiling conditions for application to one-and three-dimensional computer codes,” Nucl Eng Des, vol. 240, no. 2, pp.235–244, 2010. DOI: 10.1016/j.nucengdes.2008.12.007.
  • H. Müller-Steinhagen and K. Heck, “A simple friction pressure drop correlation for two-phase flow in pipes,” Chem Eng Process, vol. 20, no. 6, pp.297–308, 1986. DOI: 10.1016/0255-2701(86)80008-3.
  • R. Grönnerud, “Investigation of liquid hold-up, flow-resistance and heat transfer in circulation type evaporators, part IV: two-phase flow resistance in boiling refrigerants.” Bull. De l’Inst. Du Froid, Annexe. vol.1, pp. 127–138, 1972
  • R. W. Lockhart and R. C. Martinelli, “Proposed correlation of data for isothermal two-phase, two-component flow in pipes,” Chem Eng Prog, vol. 45, pp. 39–48, 1949.
  • L. Sun and K. Mishima, “Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels.” In 16th International Conference on Nuclear Engineering, Orlando, Florida, USA, Vol. 48159, pp. 649–658, 2008. DOI: 10.1115/ICONE16-48210.
  • Y. Xu and X. Fang, “A new correlation of two-phase frictional pressure drop for evaporating flow in pipes,” J Int Acad Refrig, vol. 35, no. 7, pp.2039–2050, 2012. DOI: 10.1016/j.ijrefrig.2012.06.011.
  • D. Chisholm, “A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow,” Int J Heat Mass Transf, vol. 10, no. 12, pp.1767–1778, 1967. DOI: 10.1016/0017-9310(67)90047-6.
  • B. K. Hardik and S. V. Prabhu, “Boiling pressure drop and local heat transfer distribution of water in horizontal straight tubes at low pressure,” Int J Therm Sci, vol. 110, pp. 65–82, 2016. DOI: 10.1016/j.ijthermalsci.2016.06.025.
  • L. Friedel, “Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow.” In European Two-Phase Flow Group Meeting, Ispra, Italy, Vol.1979. 1979.
  • NIST reference fluid thermodynamic and transport properties database (REFPROP version 7). 2018. https://webbook.nist.gov/chemistry/fluid/
  • P. K. Baburajan, G. S. Bisht, S. K. Gupta, and S. V. Prabhu, “Measurement of subcooled boiling pressure drop and local heat transfer coefficient in horizontal tube under LPLF conditions,” Nucl Eng Des, vol. 255, pp. 169–179, 2013. DOI: 10.1016/j.nucengdes.2012.10.012.
  • S. Z. Rouhani and E. Axelsson, “Calculation of void volume fraction in the subcooled and quality boiling regions,” Int J Heat Mass Transf, vol. 13, no. 2, pp.383–393, 1970. DOI: 10.1016/0017-9310(70)90114-6.
  • M. O. Didi, N. Kattan, and J. R. Thome, “Prediction of two-phase pressure gradients of refrigerants in horizontal tubes,” J Int Acad Refrig, vol. 25, no. 7, pp.935–947, 2002. DOI: 10.1016/S0140-7007(01)00099-8.
  • L. Santini, A. Cioncolini, C. Lombardi, and M. Ricotti, “Dryout occurrence in a helically coiled steam generator for nuclear power application.” In EPJ Web of Conferences, Kutna Hora, Czech Reublic (Vol. 67, p. 02102). EDP Sciences. 2014. DOI: 10.1051/epjconf/20146702102.
  • R. J. Moffat, “Describing the uncertainties in experimental results,” Exp Therm Fluid Sci, vol. 1, no. 1, pp.3–17, 1988. DOI: 10.1016/0894-1777(88)90043-X.
  • L. Wang, Y. Dai, J. Wu, and B. Li, “Experimental investigation on flow boiling heat transfer characteristics of R1234ze (E)/R152a in 6-mm ID horizontal smooth tube,” Exp. Heat Transfer, vol. 34, no. 4, pp.342–355, 2021. DOI: 10.1080/08916152.2020.1749191.
  • J. Wu, B. Li, B. Li, and Y. Dai, “Flow boiling heat transfer performances of R1234ze (E)/R152a in a horizontal micro-fin tube,” Exp. Heat Transfer, vol. 34, no. 1, pp.1–18, 2021. DOI: 10.1080/08916152.2020.1713255.
  • K. Prabhul, P. K. Baburajan, S. K. Gupta, and S. V. Prabhu, “Experimental investigation on critical heat flux in horizontal channel for low pressure low flow (LPLF) condition,” Ann. Nucl. Energy, vol. 37, no. 11, pp.1467–1475, 2010. DOI: 10.1016/j.anucene.2010.06.016.
  • A. P. Roday and M. K. Jensen, “Study of the critical heat flux condition with water and R-123 during flow boiling in microtubes. Part I: experimental results and discussion of parametric effects,” Int J Heat Mass Transf, vol. 52, no. 13–14, pp.3235–3249, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.02.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.