Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 36, 2023 - Issue 6
194
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Molecular dynamic simulation and experimental data on graphene wettability on heated structured surfaces

, &
Pages 808-825 | Received 29 Dec 2021, Accepted 10 May 2022, Published online: 25 May 2022

References

  • A. Castro Neto, F. Guinea, N. Peres, K. Novoselov, and A. Geim. “The electronic properties of graphene,” Rev. Mod. Phys, vol. 81, no. 1, pp.109–162, 2009. DOI: 10.1103/RevModPhys.81.109.
  • F. Schwierz. “Graphene transistors,” Nat. Nanotechnol, vol. 5, no. 7, pp.487–496, 2010. DOI: 10.1038/nnano.2010.89.
  • A. C. Ferrari, et al. “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale, vol. 7, pp. 4598–4810, 2014. DOI:10.1039/C4NR01600A.
  • S. Novikov, N. Lebedeva, and A. Satrapinski. “Ultrasensitive NO2 gas sensor based on epitaxial graphene,” J. Sensors, vol. 2015, pp. 1–7, 2015. DOI: 10.1155/2015/108581.
  • M. B. Lerner, et al. “Large scale commercial fabrication of high quality graphene-based assays for biomolecule detection,” Sensors Actuators B, vol. 239, pp. 1261–1267, 2017. DOI: 10.1016/j.snb.2016.09.137.
  • J. Dauber, et al. “Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride,” Appl. Phys. Lett, vol. 106, no. 19, pp.193501, 2015. DOI: 10.1063/1.4919897.
  • F. Schedin, et al. “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater, vol. 6, no. 9, pp.652–655, 2007. DOI: 10.1038/nmat1967.
  • J. Abraham, et al. “Tunable sieving of ions using graphene oxide membranes,” Nat. Nanotechnol, vol. 12, no. 6, pp. 546–550, 2017. DOI: 10.1038/nnano.2017.21.
  • R. K. Joshi, et al. “Precise and ultrafast molecular sieving through graphene oxide membranes,” Science, vol. 343, no. 6172, pp.752–754, 2014. DOI: 10.1126/science.1245711.
  • A. Akbari, et al. “Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide,” Nat. Commun, vol. 7, no. 1, pp.1089, 2016. DOI: 10.1038/ncomms10891.
  • R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim. “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science, vol. 335, no. 6067, pp.442–444, 2012. DOI: 10.1126/science.1211694.
  • S. P. Surwade, et al. “Water desalination using nanoporous single-layer graphene,” Nat. Nanotechnol, vol. 10, no. 5, pp.459–464, 2015. DOI: 10.1038/nnano.2015.37.
  • P. Sun, K. Wang, and H. Zhu. “Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications,” Adv. Mater, vol. 28, pp. 2287–22310, 2016. DOI:10.1002/adma.201502595.
  • A. Aghigh, et al. “Recent advances in utilization of graphene for filtration and desalination of water: a review,“ Desalination, vol. 365, pp. 389–397, 2015. DOI:10.1016/j.desal.2015.03.024.
  • D. An, L. Yang, T. J. Wang, and B. Liu. “Separation performance of graphene oxide membrane in aqueous solution, Ind,” Eng. Chem. Res, vol. 55, no. 17, pp.4803–4810, 2016. DOI: 10.1021/acs.iecr.6b00620.
  • M. E. Suk and N. R. Aluru. “Molecular and continuum hydrodynamics in graphene nanopores,” RSC Adv, vol. 3, no. 24, pp.9365, 2013. DOI: 10.1039/c3ra40661j.
  • O. Leenaerts, B. Partoens, and F. Peeters. “Water on graphene: hydrophobicity and dipole moment using density functional theory,” Phys. Rev. B, vol. 79, no. 23, pp.1–5, 2009. DOI: 10.1103/PhysRevB.79.235440.
  • O. Leenaerts, B. Partoens, and F. M. Peeters. “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study,” Phys. Rev. B, vol. 77, no. 12, pp.125416, 2008. DOI: 10.1103/PhysRevB.77.125416.
  • R. M. Ribeiro, N. M. R. Peres, J. Coutinho, and P. R. Briddon. “Inducing energy gaps in monolayer and bilayer graphene: local density approximation calculations,” Phys. Rev. B, vol. 78, no. 7, pp.1–7, 2008. DOI: 10.1103/PhysRevB.78.075442.
  • T. Lohmann, K. Von Klitzing, and J. H. Smet. “Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping,” Nano Lett., vol. 9, no. 5, pp.1973–1979, 2009. DOI: 10.1021/nl900203n.
  • M. Lafkioti, et al. “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett., vol. 10, no. 4, pp.1149–1153, 2010. DOI: 10.1021/nl903162a.
  • R. Raj, S. C. Maroo, and E. N. Wang. “Wettability of Graphene,” Nano Lett., vol. 13, no. 4, pp.1509–1515, 2013. DOI: 10.1021/nl304647t.
  • S. Ryu, et al. “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” Nano Lett., vol. 10, no. 12, pp.4944–4951, 2010. DOI: 10.1021/nl1029607.
  • L. Liu, et al. “Graphene oxidation: thickness-dependent etching and strong chemical doping,” Nano Lett., vol. 8, no. 7, pp.1965–1970, 2008. DOI: 10.1021/nl0808684.
  • S. Y. Misyura, V. A. Andryushchenko, D. V. Smovzh, and V. S. Morozov. “Graphene wettability control: texturing of the substrate and removal of airborne contaminants in the atmosphere of various gases,” J. of Molecular Liquids, vol. 349, pp. 118116, 2022. DOI: 10.1016/j.molliq.2021.118116.
  • S. Y. Misyura, V. A. Andryushchenko, D. V. Smovzh, and V. S. Morozov. “Experimental data and modeling of wettability on graphene-coated copper,” Materials Science and Engineering: B, vol. 277, pp. 115588, 2022. DOI: 10.1016/j.mseb.2021.115588.
  • C. Melios, C. E. Giusca, V. Panchal, and O. Kazakova. “Water on graphene: review of recent progress, 2D Mater,” vol. 5, pp. 022001, 2018. DOI:10.1088/2053-1583/aa9ea9.
  • C. J. Shih, et al. “Breakdown in the wetting transparency of graphene,” Phys. Rev. Lett, vol. 109, pp. 1–5, 2012. DOI: 10.1103/PhysRevLett.109.176101.
  • A. C. Ferrari, et al. “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett, vol. 97, no. 18, pp. 187401, 2006. DOI: 10.1103/PhysRevLett.97.187401.
  • M. Munz, C. E. Giusca, R. L. Myers-Ward, D. K. Gaskill, and O. Kazakova. “Thickness-dependent hydrophobicity of epitaxial graphene,” ACS Nano, vol. 9, no. 8, pp.8401–8411, 2015. DOI: 10.1021/acsnano.5b03220.
  • C.-J. Shih, M. S. Strano, and D. Blankschtein. “Wetting translucency of graphene Nat,” Mater, vol. 12, pp. 866–869, 2013. DOI:10.1038/nmat3760.
  • H. Hu and R. G. Larson. “Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet,” Langmuir, vol. 21, no. 9, pp.3972–3980, 2005. DOI: 10.1021/la0475270.
  • S. Y. Misyura, et al. “The influence of the surface microtexture on wettability properties and drop evaporation,” Surf. Coat. Technol., vol. 375, pp. 458–467, 2019. DOI: 10.1016/j.surfcoat.2019.07.058.
  • S. Y. Misyura. “The influence of convection on heat transfer in a water layer on a heated structured wall,” Int. Communications in Heat and Mass Transfer, vol. 102, pp. 14–21, 2019. DOI: 10.1016/j.icheatmasstransfer.2019.01.010.
  • Y. Huang, J. Jun Lu, and S. Meng. “Transparency in graphene mediated evaporation,” 2D Mater, vol. 5, pp. 041001, 2018. DOI:10.1088/2053-1583/aac9ff.
  • V. Y. Borodulin, et al. “Influence of relative air humidity on evaporation of water–ethanol solution droplets,” Colloid Journal, vol. 83, no. 3, pp. 277–283, 2021. DOI: 10.1134/S1061933X21030029.
  • V. I. Terekhov and N. E. Shishkin. “Influence of a surfactant on evaporation intensity of suspended water droplets,” Colloid Journal, vol. 83, no. 1, pp.135–141, 2021. DOI: 10.1134/S1061933X20060186.
  • Y. J. Shin, et al. “Surface-energy engineering of graphene,” Langmuir, vol. 26, no. 6, pp.3798–3802, 2010. DOI: 10.1021/la100231u.
  • D. Parobek and H. Liu. “Wettability of graphene,” 2D Mater, vol. 2, pp. 032001, 2015. DOI:10.1088/2053-1583/2/3/032001.
  • A. M. Emelyanenko, et al. “Nanosecond laser micro- and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion,” Appl. Surf. Sci., vol. 332, pp. 513–517, 2015. DOI: 10.1016/j.apsusc.2015.01.202.
  • L. B. Boinovich, et al. “Not simply repel water: the diversified nature of corrosion protection by superhydrophobic coating,” Mendeleev Commun., vol. 27, no. 3, pp. 254–256, 2017. DOI: 10.1016/j.mencom.2017.05.012.
  • L. B. Boinovich, et al. “Not simply repel water: the diversified nature of corrosion protection by superhydrophobic coating,” ACS Nano, vol. 13, no. 4, pp. 4335–4346, (2019). DOI: 10.1021/acsnano.8b09549.
  • S. Y. Misyura. “The influence of characteristic scales of convection on non-isothermal evaporation of a thin liquid layer,” Sci Rep, vol. 8, pp. 11521, 2018. DOI: 10.1038/s41598-018-29015-3.
  • S. Y. Misyura. “Dependence of wettability of microtextured wall on the heat and mass transfer: simple estimates for convection and heat transfer,” Int. J. Mech. Sci., vol. 170, pp. 105353, 2020. DOI: 10.1016/j.ijmecsci.2019.105353.
  • G. V. Kuznetsov, et al. “Marangoni flow and free convection during crystallization of a salt solution droplet,” Colloids Surf A Physicochem Eng Asp, vol. 572, pp. 37–46, 2019. DOI: 10.1016/j.colsurfa.2019.03.051.
  • R. Chen, L. Zhang, D. Zang, and W. Shen. “Blood drop patterns: formation and applications,” Adv. Colloid Interface Sci., vol. 231, pp. 1–14, 2016. DOI: 10.1016/j.cis.2016.01.008.
  • S. Y. Misyura, R. S. Volkov, and A. S. Filatova. “Interaction of two drops at different temperatures: the role of thermocapillary convection and surfactant,” Colloids and Surfaces A, vol. 559, pp. 275–283, 2018. DOI: 10.1016/j.colsurfa.2018.09.063.
  • X. Li, et al. “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, vol. 324, no. 5932, pp.1312, 2009. DOI: 10.1126/science.1171245.
  • A. Haji, H. Moghadasi, and H. Saffari. “Experimental study of electrospray deposition method parameters on TiO2 coating structure in pool boiling performance enhancement,” Exp. Heat Transfer, pp. 1–21, 2022. DOI: 10.1080/08916152.2021.2019146.
  • U. N. Shete, R. Kumar, and R. Chandra. “Pool boiling heat transfer enhancement of R134a, R32, and R600a using reentrant cavity surfaces,” Exp. Heat Transfer, pp. 1–20, 2022. DOI: 10.1080/08916152.2022.2055226.
  • X. Zhao, H. Zhang, X. Xi, F. Liu, and B. Zhang. “Effect of unidirectional surface roughness on heat transfer performance of spray cooling,” Exp. Heat Transfer, pp. 1–24, 2022. DOI: 10.1080/08916152.2022.2040653.
  • B. Brooks, et al. “CHARMM: the biomolecular simulation program,” J. of Computational Chemistry, vol. 30, no. 10, pp. 1545–1614, 2009. DOI: 10.1002/jcc.21287.
  • E. F. Pettersen, et al. “UCSF Chimera—a visualization system for exploratory research and analysis,” J. of Computational Chemistry, vol. 25, no. 13, pp. 1605–1612, 2004. DOI: 10.1002/jcc.20084.
  • F. Taherian, V. Marcon, N. F. A. van der Vegt, and F. Leroy. “What is the contact angle of water on graphene?,” Langmuir, vol. 29, no. 5, pp.1457–1465, 2013. DOI: 10.1021/la304645w.
  • J. Zuo, et al. “Enhanced plasticity and corrosion resistance of high strength Al-Zn-Mg-Cu alloy processed by an improved thermomechanical processing,” J Alloys Compd, vol. 716, pp. 220–230, 2017. DOI: 10.1016/j.jallcom.2017.05.047.
  • E. Ohaeri, J. Omale, U. Eduor, and J. Szpunar. “Effect of thermomechanical processing and crystallographic orientation on the corrosion behavior of API 5L X70 pipeline steel,” Metall. Mater. Trans. A, vol. 49, no. 6, pp.2269–2280, 2018. DOI: 10.1007/s11661-018-4592-5.
  • J. Hu, et al. “Roles of oxygen and hydrogen in crystal orientation transition of copper foils for high-quality graphene growth,” Sci Rep, vol. 7, no. 1, pp.45358, 2017. DOI: 10.1038/srep45358.
  • C. M. Orofeo, et al. “Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene,” Carbon 50 2012. pp. 2189. DOI:10.1016/j.carbon.2012.01.030.
  • O. Frank, J. Vejpravova, V. Holy, L. Kavan, and M. Kalbac. “Interaction between graphene and copper substrate: the role of lattice orientation,” Carbon, vol. 68, pp. 440, 2014. DOI: 10.1016/j.carbon.2013.11.020.
  • E. V. Boyko, I. A. Kostogrud, I. A. Bezrukov, A. S. Krivenko, and D. V. Smovzh. “The influence of the crystallographic orientation of the copper catalytic substrate crystallites on the mechanical transfer of graphene, Mater,” Res. Express, vol. 6, no. 12, pp.125628, 2019. DOI: 10.1088/2053-1591/ab6537.
  • G. Vasserman and I. Greven. Textures of Metal Materials. M: Metallurgy. pp. 655 1969.
  • S. Shah, et al. “Impact of short duration, high-flow H2 annealing on graphene synthesis and surface morphology with high spatial resolution assessment of coverage,” Carbon, vol. 125, pp. 318–326, 2017. DOI: 10.1016/j.carbon.2017.09.048.
  • S. Akhtar, et al. “Few-layers graphene film and copper surface morphology for improved corrosion protection of copper,” J Mater Eng Perform, vol. 28, no. 9, pp.5541–5550, 2019. DOI: 10.1007/s11665-019-04268-9.
  • B. Wang, et al. “Effect of Cu substrate roughness on growth of graphene domains at atmospheric pressure,” Mater. Lett., vol. 131, pp. 138–140, 2014. DOI: 10.1016/j.matlet.2014.05.155.
  • H. Wang, et al. “Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foil by suppressing nucleation,” J Am. Chem. Soc, vol. 134, no. 8, pp.3627–3630, 2012. DOI: 10.1021/ja2105976.
  • S. Y. Misyura, et al. “The effect of textured surface on graphene wettability and droplet evaporation,” J. of Materials Science, vol. 57, no. 3, pp. 1850–1862, 2022. DOI: 10.1007/s10853-021-06853-7.
  • L. Z, et al. “Effect of airborne contaminants on the wettability of supported graphene and graphite,” Nat. Mater, vol. 12, no. 10, pp. 925, 2013. DOI: 10.1038/nmat3709.
  • F. Girard, M. Antoni, and K. Sefiane. “On the effect of Marangoni flow on evaporation rates of heated water drops,” Langmuir, vol. 24, no. 17, pp.9207–9210, 2008. DOI: 10.1021/la801294x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.