Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 36, 2023 - Issue 6
450
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Temperature-dependent spectral emittance of bauxite and silica particle beds

, , , , &
Pages 826-844 | Received 09 Feb 2022, Accepted 16 May 2022, Published online: 29 May 2022

References

  • A. Gil, et al., “State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization,” Renew. Sustain. Energy Rev, vol. 14, no. 1, pp. 31–55, 2010. DOI: 10.1016/j.rser.2009.07.035.
  • C. K. Ho, “A review of high-temperature particle receivers for concentrating solar power,” Appl. Therm. Eng, vol. 109, pp. 958–969, 2016. DOI:10.1016/j.applthermaleng.2016.04.103.
  • W. Lipiński, et al., “Progress in heat transfer research for high-temperature solar thermal applications,” Appl. Therm. Eng, vol. 184, pp. 116137, 2021. DOI: 10.1016/j.applthermaleng.2020.116137.
  • N. P. Siegel, M. D. Gross, C. K. Ho, T. Phan, and J. Yuan, “Physical properties of solid particle thermal energy storage media for concentrating solar power applications,” Energy Procedia, vol. 49, pp. 1015–1023, 2014. DOI:10.1016/j.egypro.2014.03.109.
  • N. P. Siegel, M. D. Gross, and R. Coury, “The development of direct absorption and storage media for falling particle solar central receivers,” J. Sol. Energy Eng, vol. 137, no. 4, pp. 041003, 2015. DOI: 10.1115/1.4030069.
  • C. K. Ho, et al., “On-sun performance evaluation of alternative high-temperature falling particle receiver designs,” J. Sol. Energy Eng, vol. 141, no. 1, pp. 011009, 2019. DOI: 10.1115/1.4041100.
  • Z. Ma, G. Glatzmaier, and M. Mehos, “Fluidized bed technology for concentrating solar power with thermal energy storage,” J. Sol. Energy Eng, vol. 136, no. 3, pp. 031014, 2014. DOI: 10.1115/1.4027262.
  • T. Baumann and S. Zunft, “Properties of granular materials as heat transfer and storage medium in CSP application,” Sol. Energy Mater. Sol. Cells, vol. 143, pp. 38–47, 2015. DOI:10.1016/j.solmat.2015.06.037.
  • G. Evans, W. Houf, R. Greif, and C. Crowe, “Gas-particle flow within a high temperature solar cavity receiver including radiation heat transfer,” J. Sol. Energy Eng, vol. 109, no. 2, pp. 134–142, 1987. DOI: 10.1115/1.3268190.
  • A. Kumar, J.-S. Kim, and W. Lipiński, “Radiation absorption in a particle curtain exposed to direct high-flux solar irradiation,” J. Sol. Energy Eng, vol. 140, no. 6, pp. 061007, 2018. DOI: 10.1115/1.4040290.
  • N. P. Siegel, C. K. Ho, S. S. Khalsa, and G. J. Kolb, “Development and evaluation of a prototype solid particle receiver: on-sun testing and model validation,” J. Sol. Energy Eng, vol. 132, no. 2, pp. 021008, 2010. DOI: 10.1115/1.4001146.
  • C. L. Tien, “Thermal radiation in packed and fluidized beds,” J. Heat Transfer, vol. 110, no. 11, pp. 1230–1242, 1988. DOI: 10.1115/1.3250623.
  • B. M. Agarwal and M. P. Mengüç, “Forward and inverse analysis of single and multiple scattering of collimated radiation in an axisymmetric system,” Int. J. Heat Mass Transfer, vol. 34, no. 3, pp. 633–647, 1991. DOI: 10.1016/0017-9310(91)90112-R.
  • K. Kamiuto, M. Iwamoto, M. Sato, and T. Nishimura, “Radiation-extinction coefficients of packed-sphere systems,” J. Quant. Spectrosc. Radiat. Transfer, vol. 45, no. 2, pp. 93–96, 1991. DOI: 10.1016/0022-4073(91)90103-W.
  • P. Coray, W. Lipiński, and A. Steinfeld, “Spectroscopic goniometry system for determining thermal radiative properties of participating media,” Exp. Heat Transfer, vol. 24, no. 4, pp. 300–312, 2011. DOI: 10.1080/08916152.2011.556311.
  • K. Ganesan, J. Randrianalisoa, and W. Lipiński, “Effect of morphology on spectral radiative properties of three-dimensionally ordered macroporous ceria packed bed,” J. Heat Transfer, vol. 135, no. 12, pp. 122701, 2013. DOI: 10.1115/1.4024942.
  • J. Griffin, K. Stahl, and R. Pettit, “Optical properties of solid particle receiver materials: i. Angular scattering and extinction characteristics of Norton Masterbeads®,” Sol. Energy Mater, vol. 14, no. 3–5, pp. 395–416, 1986. DOI: 10.1016/0165-1633(86)90062-6.
  • J. Roop, S. Jeter, S. I. Abdel-Khalik, and C. K. Ho, “Optical properties of select particulates after high-temperature exposure,” Proc. ASME 8th Inernational Conference on Energy Sustainability, Paper No. ES2014-6504, Boston, MA, 2014. 10.1115/ES2014-6504
  • J. Marti, M. Roesle, and A. Steinfeld, “Experimental determination of the radiative properties of particle suspensions for high-temperature solar receiver applications,” Heat Transfer Eng, vol. 35, no. 3, pp. 272–280, 2014. DOI: 10.1080/01457632.2013.825173.
  • D. Mischler and A. Steinfeld, “Nonisothermal nongray absorbing-emitting-scattering suspension of Fe3O4 particles under concentrated solar irradiation,” J. Heat Transfer, vol. 117, no. 2, pp. 346–354, 1995. DOI: 10.1115/1.2822528.
  • C. Chen, C. Yang, D. Ranjan, P. G. Loutzenhiser, and Z. M. Zhang, “Spectral radiative properties of ceramic particles for concentrated solar thermal energy storage applications,” Int. J. Thermophys, vol. 41, pp. 152, 2020. DOI:10.1007/s10765-020-02733-5.
  • B. Gobereit, L. Amsbeck, C. Happich, and M. Schmücker, “Assessment and improvement of optical properties of particles for solid particle receiver,” Solar Energy, vol. 199, no. 3, pp. 844–851, 2020. DOI: 10.1016/j.solener.2020.02.076.
  • J. Chen, et al., “Optical and radiative characterisation of alumina–silica based ceramic materials for high-temperature solar thermal applications,” J. Quant. Spectrosc. Radiat. Transfer, vol. 272, pp. 107754, 2021. DOI: 10.1016/j.jqsrt.2021.107754.
  • S. Y. Jeong, C. Chen, D. Ranjan, P. G. Loutzenhiser, and Z. M. Zhang, “Measurements of scattering and absorption properties of submillimeter bauxite and silica particles,” J. Quant. Spectrosc. Radiat. Transfer, vol. 276, pp. 107923, 2021. DOI:10.1016/j.jqsrt.2021.107923.
  • M. V. Bagepall, et al., “Measurement of flow properties coupled to experimental and numerical analyses of dense, granular flows for solar thermal energy storage,” Solar Energy, vol. 207, pp. 77–90, 2020. DOI: 10.1016/j.solener.2020.06.062.
  • K. M. Chung, et al., “Measurement and analysis of thermal conductivity of ceramic particle beds for solar thermal energy storage,” Sol. Energy Mater. Sol. Cells, vol. 230, pp. 111271, 2021. DOI: 10.1016/j.solmat.2021.111271.
  • E. F. Johnson, I. Tari, and D. Baker, “Modeling heat exchangers with an open source DEM-based code for granular flows,” Solar Energy, vol. 228, pp. 374–386, 2021. DOI:10.1016/j.solener.2021.09.067.
  • J. Martinek and Z. Ma, “Granular flow and heat-transfer study in a near-blackbody enclosed particle receiver,” J. Sol. Energy Eng, vol. 137, no. 5, pp. 051008, 2015. DOI: 10.1115/1.4030970.
  • W. Wang, Y. Shuai, B. G. Lougou, and B. Jiang, “Thermal performance analysis of free-falling solar particle receiver and heat transfer modelling of multiple particles,” Appl. Therm. Eng, vol. 187, pp. 116567, 2021. DOI:10.1016/j.applthermaleng.2021.116567.
  • O. Rozenbaum, D. D. S. Meneses, Y. Auger, S. Chermanne, and P. Echegut, “A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature,” Rev. Sci. Instrum, vol. 70, no. 10, pp. 4020–4025, 1999. DOI: 10.1063/1.1150028.
  • L. Del Campo, R. B. Pérez-Sáez, X. Esquisabel, I. Fernández, and M. J. Tello, “New experimental device for infrared spectral directional emissivity measurements in a controlled environment,” Rev. Sci. Instrum, vol. 77, no. 11, pp. 113111, 2006. DOI: 10.1063/1.2393157.
  • C. P. Cagran, L. M. Hanssen, M. Noorma, A. V. Gura, and S. N. Mekhontsev, “Temperature-resolved infrared spectral emissivity of SiC and Pt-10Rh for temperatures up to 900°C,” Int. J. Thermophys, vol. 28, no. 2, pp. 581–597, 2007. DOI: 10.1007/s10765-007-0183-1.
  • L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry–Perot cavity resonator,” J. Heat Transfer, vol. 134, no. 7, pp. 072701, 2012. DOI: 10.1115/1.4006088.
  • I. Setién-Fernández, et al., “First spectral emissivity study of a solar selective coating in the 150–600°C temperature range,” Sol. Energy Mater. Sol. Cells, vol. 117, pp. 390–395, 2013. DOI: 10.1016/j.solmat.2013.07.002.
  • S. Shan, et al., “Spectral emittance measurements of micro/nanostructures in energy conversion: a review,” Front. Energy, vol. 14, no. 3, pp. 482–509, 2020. DOI: 10.1007/s11708-020-0693-0.
  • G. Flamant, “Theoretical and experimental study of radiant heat transfer in a solar fluidized-bed receiver,” AIChE J, vol. 28, no. 4, pp. 529–535, 1982. DOI: 10.1002/aic.690280402.
  • K. A. Stahl, J. W. Griffin, and R. B. Pettit, “Optical properties of solid particle receiver materials: II. Diffuse reflectance of Norton Masterbeads® at elevated temperatures,” Sol. Energy Mater, vol. 14, no. 3–5, pp. 417–425, 1986. DOI: 10.1016/0165-1633(86)90063-8.
  • J. Yamada and Y. Kurosaki, “Estimation of a radiative property of scattering and absorbing media,” Int. J. Thermophys, vol. 18, no. 2, pp. 547–556, 1997. DOI: 10.1007/BF02575183.
  • A. Sielaff, et al., “Temperature measurement using infrared thermometry within semi-transparent media,” Exp. Heat Transfer, vol. 32, no. 6, pp. 545–565, 2019. DOI: 10.1080/08916152.2018.1549622.
  • P. Jones, D. McLeod, and D. Dorai-Raj, “Correlation of measured and computed radiation intensity exiting a packed bed,” J. Heat Transfer, vol. 118, no. 1, pp. 94–102, 1996. DOI: 10.1115/1.2824073.
  • D. Baillis and J.-F. Sacadura, “Directional spectral emittance of a packed bed: influence of the temperature gradient in the medium,” J. Heat Transfer, vol. 124, no. 5, pp. 904–911, 2002. DOI: 10.1115/1.1466459.
  • R. R. Lopes, L. M. Moura, D. Baillis, and J.-F. Sacadura, “Directional spectral emittance of a packed bed: correlation between theoretical prediction and experimental data,” J. Heat Transfer, vol. 123, no. 2, pp. 240–248, 2001. DOI: 10.1115/1.1338134.
  • A. E. Wald and J. W. Salisbury, “Thermal infrared directional emissivity of powdered quartz,” J. Geophys. Res, vol. 100, no. B12, pp. 24665–24675, 1995. DOI: 10.1029/95JB02400.
  • D. D. S. Meneses, P. Melin, L. Del Campo, O. Rozenbaum, and L. Cosson, “Probing high temperature thermal emissive properties of energy materials and coatings with emission spectroscopy augmented by in situ reflection,” Infrared Phys. Technol, vol. 108, pp. 103329, 2020. DOI:10.1016/j.infrared.2020.103329.
  • W. Zhao, Z. Sun, and Z. T. Alwahabi, “Emissivity and absorption function measurements of Al2O3 and SiC particles at elevated temperature for the utilization in concentrated solar receivers,” Solar Energy, vol. 207, pp. 183–191, 2020. DOI:10.1016/j.solener.2020.06.079.
  • S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer, vol. 132, no. 2, pp. 023301, 2010. DOI: 10.1115/1.4000171.
  • Q. Cheng, P. Yang, and Z. M. Zhang, “Radiative properties of ceramic Al2O3, AlN, and Si3N4—I. Experiments,” Int. J. Thermophys, vol. 37, pp. 62, 2016. DOI:10.1007/s10765-016-2067-8.
  • Z. M. Zhang, Nano/Microscale Heat Transfer. 2nd. Cham, Switzerland: Springer Nature Switzerland AG, 2020.
  • H. R. Philipp, “Silicon dioxide (SiO2) (Glass),” in Handbook of Optical Constants of Solids, E. D. Palik, Ed. San Diego: Academic Press Imprint, 1998, pp. 749–763.
  • R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt, vol. 46, no. 33, pp. 8118–8133, 2007. DOI: 10.1364/AO.46.008118.
  • D.-Z. A. Chen, R. Hamam, M. Soljačić, J. D. Joannopoulos, and G. Chen, “Extraordinary optical transmission through subwavelength holes in a polaritonic silicon dioxide film,” Appl. Phys. Lett, vol. 90, no. 18, pp. 181921, 2007. DOI: 10.1063/1.2736267.
  • C. Chen, C. Yang, D. Ranjan, P. G. Loutzenhiser, and Z. M. Zhang, “Spectral radiative properties of polydispersed SiO2 particle beds,” J. Thermophys. Heat Transfer, published online. DOI: 10.2514/1.T6524.
  • H. R. Philipp, “Silicon dioxide (SO2), type α (crystalline),” in Handbook of Optical Constants of Solids, E. D. Palik, Ed. San Diego: Academic Press Imprint, 1998, pp. 719–747.
  • S. Zeidler, T. Posch, and H. Mutschke, “Optical constants of refractory oxides at high temperatures: mid-infrared properties of corundum, spinel, and α-quartz, potential carriers of the 13 μm feature,” Astronomy & Astrophys, vol. 553, pp. A81, 2013. DOI:10.1051/0004-6361/201220459.
  • F. Gervais and B. Piriou, “Temperature dependence of transverse and longitudinal optic modes in the α and β phases of quartz,” Phys. Rev. B, vol. 11, no. 10, pp. 3944–3950, 1975. DOI: 10.1103/PhysRevB.11.3944.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.