Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 36, 2023 - Issue 6
104
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Multi view interferometric tomography measurements of convective phenomena in a differentially-heated nanofluid layer

&
Pages 845-876 | Received 02 Mar 2022, Accepted 16 May 2022, Published online: 26 May 2022

References

  • S. Thomas and C. B. P. Sobhan, “A review of experimental investigations on thermal phenomena in nanofluids,” Nanoscale Res. Lett, vol. 6, no. 377, pp. 1–21, 2011. DOI: 10.1186/1556-276X-6-377.
  • M. Chandrasekar and S. Suresh, “Experiments to explore the mechanisms of heat transfer in nanocrystalline alumina/water nanofluid under laminar and turbulent flow conditions,” Exp. Heat Transf, vol. 24, no. 3, pp. 234–256, 2010. DOI: 10.1080/08916152.2010.523809.
  • B. Fekadu, R. Kathiravan, and P. Saravanan, “Augmentation of pool boiling heat transfer characteristics using naphtha carbon soot nanoparticles–water based nanofluids,” Exp. Heat Transf, pp. 1–16, 2021. DOI: 10.1080/08916152.2021.1958108.
  • W. Yu, D. M. France, D. Singh, and W. Zhao, “Experimental investigation of subcooled flow boiling of a 50/50 ethylene glycol/water mixture in finned rectangular aluminum channels,” Exp. Heat Transf, vol. 31, no. 6, pp. 482–494, 2018. DOI: 10.1080/08916152.2018.1451412.
  • E. Y. Gürbüz, A. Sözen, A. Keçebaş, and E. Özbaş, “Experimental and numerical investigation of diffusion absorption refrigeration system working with ZnOAl2O3 and TiO2 nanoparticles added ammonia/water nanofluid,” Exp. Heat Transf, vol. 35, no. 3, pp. 197–222, 2022. DOI: 10.1080/08916152.2020.1838668.
  • M. Khoshvaght-Aliabadi and F. Hormozi, “Heat transfer enhancement by using copper–water nanofluid flow inside a pin channel,” Exp. Heat Transf, vol. 28, no. 5, pp. 446–463, 2014. DOI: 10.1080/08916152.2014.907844.
  • A. Baïri and N. Laraqi, “Experimental quantification of natural convective heat transfer within annulus space filled with a H2O-Cu nanofluid saturated porous medium. application to electronics cooling,” Exp. Heat Transf, vol. 32, no. 4, pp. 364–375, 2019. DOI: 10.1080/08916152.2018.1526230.
  • S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett, vol. 79, no. 14, pp. 2252, 2001. DOI: 10.1063/1.1408272.
  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME Int. Mech. Eng. Congr. Expo, vol. 66, pp. 99–105, 1995. DOI:10.1115/1.1532008.
  • S. Z. Heris, F. Mohammadpur, O. Mahian, and A. Z. Sahin, “Experimental study of two phase closed thermosyphon using Cuo/water nanofluid in the presence of electric field, exp,” Heat Transf, vol. 28, pp. 328–343, 2013. DOI:10.1080/08916152.2014.883448.
  • A. Bairi and N. Laraqi, “Experimental quantification of natural convective heat transfer within annulus space filled with a H 2 O-Cu nanofluid saturated porous medium. application to electronics cooling,” Exp. Heat Transf, vol. 32, no. 4, pp. 364–375, 2018. DOI: 10.1080/08916152.2018.1526230.
  • M. Gupta, V. Singh, R. Kumar, and Z. Said, “A review on thermophysical properties of nanofluids and heat transfer applications,” Renew. Sustain. Energy Rev, vol. 74, pp. 638–670, 2017. DOI:10.1016/j.rser.2017.02.073.
  • S. K. Das, S. U. S. Choi, and H. E. Patel, “Heat transfer in nanofluids—a review,” Exp. Heat Transf. Eng, vol. 27, no. 10, pp. 3–19, 2006. DOI: 10.1080/01457630600904593.
  • A. Sobti and R. K. Wanchoo, “Thermal conductivity of nanofluids,” Mater. Sci. Forum, vol. 757, pp. 111–137, 2013. DOI: 10.4028/scientific.net/MSF.757.111.
  • W. Evans, J. Fish, and P. Keblinski, “Role of brownian motion hydrodynamics on nanofluid thermal conductivity,” Appl. Phys. Lett, vol. 88, no. 9, pp. 1–4, 2006. DOI: 10.1063/1.2179118.
  • W. Williams, J. Buongiorno, and L.-W. Hu, “Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes,” J. Heat Transfer, vol. 130, no. 42412, pp. 1–7, 2008. DOI: 10.1115/1.2818775.
  • S. El Bécaye Maïga, S. J. Palm, C. T. Nguyen, G. Roy, and N. Galanis, “Heat transfer enhancement by using nanofluids in forced convection flows,” Int. J. Heat Fluid Flow, vol. 26, no. 4, pp. 530–546, 2005. DOI: 10.1016/j.ijheatfluidflow.2005.02.004.
  • O. Manca, S. Nardini, and D. Ricci, “A numerical study of nanofluid forced convection in ribbed channels,” Appl. Therm. Eng, vol. 37, pp. 280–292, 2012. DOI:10.1016/j.applthermaleng.2011.11.030.
  • S. Z. Heris, M. N. Esfahany, and S. G. Etemad, “Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube,” Int. J. Heat Fluid Flow, vol. 28, no. 2, pp. 203–210, 2007. DOI: 10.1016/j.ijheatfluidflow.2006.05.001.
  • K. B. Anoop, T. Sundararajan, and S. K. Das, “Effect of particle size on the convective heat transfer in nanofluid in the developing region,” Int. J. Heat Mass Transf, vol. 52, no. 9–10, pp. 2189–2195, 2009. DOI: 10.1016/j.ijheatmasstransfer.2007.11.063.
  • A. Zamzamian, S. N. Oskouie, A. Doosthoseini, A. Joneidi, and M. Pazouki, “Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow,” Exp. Therm. Fluid Sci, vol. 35, no. 3, pp. 495–502, 2011. DOI: 10.1016/j.expthermflusci.2010.11.013.
  • A. J. Chamkha, A. M. Rashad, and A. M. Aly, “Transient natural convection flow of a nanofluid over a vertical cylinder,” Meccanica, vol. 48, no. 1, pp. 71–81, 2013. DOI: 10.1007/s11012-012-9584-8.
  • E. Abu-Nada, “Rayleigh-Bénard convection in nanofluids: effect of temperature dependent properties,” Int. J. Therm. Sci, vol. 50, pp. 1720–1730, 2011. DOI:10.1016/j.ijthermalsci.2011.04.003.
  • R. V. Pinto and F. A. S. Fiorelli, “Review of the mechanisms responsible for heat transfer enhancement using nanofluids,” Applied Thermal Engineering, vol. 108, pp. 720–739, 2016. DOI:10.1016/j.applthermaleng.2016.07.147.
  • R. Y. Jou and S. C. Tzeng, “Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures,” Int. Commun. Heat Mass Transf, vol. 33, no. 6, pp. 727–736, 2006. DOI: 10.1016/j.icheatmasstransfer.2006.02.016.
  • P. Ternik, R. Rudolf, and Z. Žunič, “Numerical study of Rayleigh-Bénard natural-convection heat-transfer characteristics of water-based Au nanofluids,” Materiali in Tehnologije, vol. 47, pp. 211–215, 2013.
  • M. Corcione, “Rayleigh-Bénard convection heat transfer in nanoparticle suspensions,” Int. J. Heat Fluid Flow, vol. 32, no. 1, pp. 65–77, 2011. DOI: 10.1016/j.ijheatfluidflow.2010.08.004.
  • M. Eslamian, M. Ahmed, M. F. El-Dosoky, and M. Z. Saghir, “Effect of thermophoresis on natural convection in a Rayleigh–Benard cell filled with a nanofluid,” Int. J. Heat Mass Transf, vol. 81, pp. 142–156, 2015. DOI:10.1016/j.ijheatmasstransfer.2014.10.001.
  • C. J. Ho, D.-S. Chen, W.-M. Yan, and O. Mahian, “Rayleigh–Bénard convection of Al2O3/water nanofluids in a cavity considering sedimentation, thermophoresis, and brownian motion,” Int. Commun. Heat Mass Transf, vol. 57, pp. 22–26, 2014. DOI:10.1016/j.icheatmasstransfer.2014.07.014.
  • M. A. Mansour, S. E. Ahmed, and A. M. Rashad, “MHD natural convection in a square enclosure using nanofluid with the influence of thermal boundary conditions,” J. Appl. Fluid Mech, vol. 9, no. 7, pp. 2515–2525, 2016. DOI: 10.18869/acadpub.jafm.68.236.24409.
  • C. H. Li and G. P. Peterson, “Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids,” J. Appl. Phys, vol. 99, no. 8, pp. 084314, 2006. DOI: 10.1063/1.2191571.
  • D. Wen and Y. Ding, “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” Int. J. Heat Mass Transf, vol. 47, no. 24, pp. 5181–5188, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.07.012.
  • Z. Haddad, E. Abu-Nada, H. F. Oztop, and A. Mataoui, “Natural convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement?,” Int. J. Therm. Sci, vol. 57, pp. 152–162, 2012. DOI:10.1016/j.ijthermalsci.2012.01.016.
  • B. H. Chang, A. F. Mills, and E. Hernandez, “Natural convection of microparticle suspensions in thin enclosures,” International Journal of Heat and Mass Transfer, vol. 51, no. 5–6, pp. 1332–1341, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.11.030.
  • C. J. Ho, W. K. Liu, Y. S. Chang, and C. C. Lin, “Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study,” Int. J. Therm. Sci, vol. 49, no. 8, pp. 1345–1353, 2010. DOI: 10.1016/j.ijthermalsci.2010.02.013.
  • M. Jahanshahi, S. F. Hosseinizadeh, M. Alipanah, A. Dehghani, and G. R. Vakilinejad, “Numerical simulation of free convection based on experimental measured conductivity in a square cavity using Water/SiO2 nanofluid,” Int. Commun. Heat Mass Transf, vol. 37, no. 6, pp. 687–694, 2010. DOI: 10.1016/j.icheatmasstransfer.2010.03.010.
  • R. Ni, S. Q. Zhou, and K. Q. Xia, “An experimental investigation of turbulent thermal convection in water-based alumina nanofluid, Phys,” Fluids, vol. 23, pp. 1–10, 2011. DOI:10.1063/1.3553281.
  • S. Narayan, A. K. Singh, and A. Srivastava, “Interferometric study of natural convection heat transfer phenomena around array of heated cylinders,” Int. J. Heat and Mass Transf, vol. 109, pp. 278–292, 2017. DOI:10.1016/j.ijheatmasstransfer.2017.01.106.
  • S. Srinivas Rao and A. Srivastava, “Interferometry-based whole field investigation of heat transfer characteristics of dilute nanofluids,” Int. J. Heat Mass Transf, vol. 79, pp. 166–175, 2014. DOI:10.1016/j.ijheatmasstransfer.2014.07.097.
  • R. K. S. Kaushik Choudhury and S. Narayan, “Atul Srivastava, and Ajai Kumar time resolved interferometric study of the plasma plume induced shock wave in confined geometry: two-dimensional mapping of the ambient and plasma density,” Phys Plasmas, vol. 23, no. 4, pp. 042108, 2016. DOI: 10.1063/1.4947032.
  • S. Mohanan and A. Srivastava, “Application of the windowed-Fourier-transform-based fringe analysis technique for investigating temperature and concentration fields in fluids,” Appl. Opt, vol. 53, no. 11, pp. 2331–2344, 2014. DOI: 10.1364/AO.53.002331.
  • S. Srinivas Rao and A. Srivastava, “Whole field measurements to understand the effect of nanoparticle concentration on heat transfer rates in a differentially-heated fluid layer,” Exp. Therm. Fluid Sci, vol. 92, pp. 326–345, 2018. DOI:10.1016/j.expthermflusci.2017.12.001.
  • D. Mishra, K. Muralidhar, and P. Munshi, “Performance evaluation of fringe thinning algorithms for interferometric tomography,” Opt. Lasers Eng, vol. 30, no. 3–4, pp. 229–249, 1998. DOI: 10.1016/S0143-8166(98)00031-1.
  • K. Muralidhar, “Temperature field measurement in buoyancy-driven flows using interferometric tomography,” Annu. Rev. Heat Transf, vol. 12, no. 12, pp. 365–375, 2002. DOI: 10.1615/AnnualRevHeatTransfer.v12.90.
  • A. Srivastava, K. Muralidhar, and P. K. Panigrahi, “Optical imaging and three dimensional reconstruction of the concentration field around a crystal growing from an aqueous solution: a review,” Prog. Cryst. Growth Charact. Mater, vol. 58, no. 4, pp. 209–278, 2012. DOI: 10.1016/j.pcrysgrow.2012.06.001.
  • D. Mishra, K. Muralidhar, and P. Munshi, “A robust mart algorithm for tomographic applications,” Numer. Heat Transf. Part B Fundam, vol. 35, no. 4, pp. 485–506, 1999. DOI: 10.1080/104077999275857.
  • A. Srivastava, D. Singh, and K. Muralidhar, “Reconstruction of time-dependent concentration gradients around a KDP crystal growing from its aqueous solution,” J. Cryst. Growth, vol. 311, no. 4, pp. 1166–1177, 2009. DOI: 10.1016/j.jcrysgro.2008.12.001.
  • A. Srivastava, K. Tsukamoto, E. Yokoyama, K. Murayama, and M. Fukuyama, “Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal,” J. Cryst. Growth, vol. 312, no. 15, pp. 2254–2262, 2010. DOI: 10.1016/j.jcrysgro.2010.04.053.
  • M. S. Astanina, M. Kamel Riahi, E. Abu-Nada, and M. A. Sheremet, “Magnetohydrodynamic in partially heated square cavity with variable properties: discrepancy in experimental and theoretical conductivity correlations,” Int. J. Heat Mass Transf, vol. 116, pp. 532–548, 2018. DOI:10.1016/j.ijheatmasstransfer.2017.09.050.
  • M. A. Sheremet, I. Pop, and O. Mahian, “Natural convection in an inclined cavity with time-periodic temperature boundary conditions using nanofluids: application in solar collectors,” Int. J. Heat Mass Transf, vol. 116, pp. 751–761, 2018. DOI:10.1016/j.ijheatmasstransfer.2017.09.070.
  • K. V. Sharma, P. K. Sharma, W. H. Azmi, R. Mamat, and K. Kadirgama, “Correlations to predict friction and forced convection heat transfer coefficients of water based nanofluids for turbulent flow in a tube,” Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom, vol. 3, pp. 1–5, 2012.
  • D. Naylor and N. Duarte, “Direct temperature gradient measurement using interferometry,” Exp. Heat Transfer, vol. 12, no. 4, pp. 279–294, 1999. DOI: 10.1080/089161599269609.
  • S. J. Kline and F. A. McClintock, “Describing experimental uncertainties in single- sample experiments,” Mech. Engg, vol. 75, pp. 3–8, 1953.
  • S. P. Jang and S. U. S. Choi, “Role of brownian motion in the enhanced thermal conductivity of nanofluids,” Appl. Phys. Lett, vol. 84, no. 21, pp. 4316–4318, 2004. DOI: 10.1063/1.1756684.
  • P. Bhattacharya, S. K. Saha, A. Yadav, P. E. Phelan, and R. S. Prasher, “Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids,” J. Appl. Phys, vol. 95, no. 11, pp. 6492–6494, 2004. DOI: 10.1063/1.1736319.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.