Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 37, 2024 - Issue 1
308
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Experimental and LES study of unconfined jet impingement on a smooth flat heated plate with slots of different widths

, , &
Pages 15-54 | Received 14 Mar 2022, Accepted 24 Jun 2022, Published online: 17 Jul 2022

References

  • J. N. B. Livinghood and P. Hrycak, “Impingement heat from turbulent air jets to flat plates - A literature survey, NASA TM,” pp. x–2778, 1973.
  • P. Hrycak, “Heat transfer from impinging jets: a literature review”, AFWAL-TR-81-3054, vol. 52, 1981.
  • S. J. Downs and E. H. James, “Jet impingement heat transfer - A literature survey,” ASME Paper No. 87-HT-35, ASME, New York, 1987.
  • K. Jambunathan, E. Lai, M. A. Moss, and B. L. Button, “A review of heat transfer data for single circular jet impingement,” Int. J. Heat Fluid Flow, vol. 13, no. 2, pp. 106–115, June. 1992. DOI: 10.1016/0142-727X(92)90017-4.
  • N. Zuckerman and N. Lion, “Jet impingement heat transfer: physics, correlations, and numerical modelling,” Adv. Heat Transf, vol. 39, pp. 565–631, 2006. DOI:10.1016/S0065-2717(06)39006-5.
  • S. Polat, B. Huang, A. S. Mujumdar, and W. J. M. Douglas, “Numerical flow and heat transfer under impinging jets: a review,” Annu. Rev. Heat Transf, vol. 2, no. 2, pp.157–197, 1989. DOI: 10.1615/AnnualRevHeatTransfer.v2.60.
  • A. Dewan, R. Dutta, and B. Srinivasan, “Recent trends in computation of turbulent jet impingement heat transfer,” Heat Transf. Eng, vol. 33, no. 4–5, pp. 447–460, November. 2011. DOI: 10.1080/01457632.2012.614154.
  • J. Joshi and S. K. Sahu, “Heat transfer characteristics of flat and concave surfaces by circular and elliptical jet impingement,” Exp. Heat Transfer November 2021, DOI:10.1080/08916152.2021.1995082.
  • R. J. Goldstein, A. I. Behbahani, and K. K. Heppelmann, “Streamwise distribution of the recovery factor and the local heat transfer coefficient to an impinging circular air Jet,” Int. J. Heat Mass Transf, vol. 29, no. 8, pp. 1227–1235, August. 1989. DOI: 10.1016/0017-9310(86)90155-9.
  • A. K. Mohanty and A. A. Tawfeek, “Heat transfer due to a round jet impinging normal to a flat surface,” Int. J. Heat Mass Transf, vol. 36, no. 6, pp. 1639–1647, 1993. DOI: 10.1016/S0017-9310(05)80073-0.
  • D. Lytle and B. W. Webb, “Air jet impingement heat transfer at low nozzle-plate spacings,” Int. J. Heat Mass Transf, vol. 37, no. 12, pp. 1687–1697, August. 1994. DOI: 10.1016/0017-9310(94)90059-0.
  • T. S. O’ Donovan and D. B. Murray, “Jet impingement heat transfer –Part I: mean and root mean square heat transfer and velocity distributions,” Int. J. Heat Mass Transf, vol. 50, no. 17–18, pp. 3291–3301, April. 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.01.044.
  • R. Gardon and J. C. Akfirat, “Heat transfer characteristics of impinging two-dimensional air jets,” J. Heat Transf, vol. 88, no. 1, pp. 101–108, 1966. DOI: 10.1115/1.3691449.
  • R. Gardon and J. C. Akfirat, “The role of turbulence in determining the heat-transfer characteristics of impinging jets,” Int. J. Heat Mass Transf, vol. 8, no. 10, pp. 1261–1272, 1965. DOI: 10.1016/0017-9310(65)90054-2.
  • D. G. Arganbright, H. Resch, and J. R. Olson, “Heat transfer from impinging slot jets of air -Part 2: average and local heat transfer coefficients,” Wood Sci. Tech, vol. 13, no. 1, pp.1–20, 1979. DOI: 10.1007/BF00350171.
  • M. N. Kumar, V. Katti, and S. V. Prabhu, “Local heat transfer distribution on a smooth flat plate impinged by a slot jet,” Int. J. Heat Mass Transf, vol. 54, no. 1–3, pp. 727–738, September. 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.09.030.
  • E. M. Sparrow and T. C. Wong, “Impingement transfer coefficients due to initially laminar slot jets,” Int. J. Heat Mass Transf, vol. 18, no. 5, pp. 597–605, October. 1975. DOI: 10.6110/KJACR.2011.23.11.754.
  • S. Ashforth-Frost, K. Jambunathan, and C. F. Whitney, “Velocity and turbulence characteristics of a semiconfined orthogonally impinging slot jet,” Exp. Therm. Fluid Sci, vol. 14, no. 1, pp. 60–67, 1997. DOI: 10.1016/S0894-1777(96)00112-4.
  • J. Zhe and V. Modi, “Near wall measurements for a turbulent impinging slot jet,” J. Fluids Eng, vol. 123, no. 1, pp. 112–120, March. 2001. DOI: 10.1115/1.1343085.
  • V. Narayanan, J. Seyed-Yagoobi, and R. H. Page, “An experimental study of fluid mechanics and heat transfer in an impinging slot jet flow,” Int. J. Heat Mass Transf, vol. 47, no. 8–9, pp. 1827–1845, April. 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.10.029.
  • M. Zukowski, “Heat transfer performance of a confined single slot jet of air impinging on a flat surface,” Int. J. Heat Mass Transf, vol. 57, no. 2, pp. 484–490, February. 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.10.069.
  • S. D. Farahani, F. Kowsary, and M. Ashjaee, “Experimental investigation of heat transfer coefficient from the impingement of a slot jet using conjugate gradient method with adjoint equation,” Exp. Heat Transf, vol. 29, no. 5, pp. 657–672, 2016. DOI: 10.1080/08916152.2015.1077295.
  • S. J. Wang and A. S. Mujumdar, “A comparative study of five low Reynolds number k-ɛ models for impingement heat transfer,” Appl. Therm. L Eng, vol. 25, no. 1, pp. 31–44, January. 2005. DOI: 10.1016/j.applthermaleng.2004.06.001.
  • D. Singh, B. Premachandran, and S. Kohli, “Numerical simulation of the jet impingement cooling of a circular cylinder,” Num. Heat Transf. Part A, vol. 64, no. 2, pp. 153–185, May. 2013. DOI: 10.1080/10407782.2013.772869.
  • G. Zhang, H. Huang, and T. Sun, “Analysis of the performance of a new developed shear transport model in an turbulent impinging jet flow,” Phys. Fluid, vol. 31, no. 115110, pp. 115110, November. 2019. DOI: 10.1063/1.5118675.
  • H. Huang, T. Sun, G. Zhang, D. Li, and H. Wei, “Evaluation of developed SST k-ω turbulence model for the prediction of turbulent slot jet impingement heat transfer,” Int. J. Heat Mass Transf, vol. 139, pp. 700–712, August. 2009. DOI: 10.1016/j.ijheatmasstransfer.2019.05.058.
  • S. Kubacki and E. Dick, “Simulation of plane impinging jets with k–ω based hybrid RANS/LES models,” Int. J. Heat Fluid Flow, vol. 31, no. 5, pp. 862–878, October. 2010. DOI: 10.1016/j.ijheatfluidflow.2010.04.011.
  • R. J. Jefferson-Loveday and P. G. Tucker, “Wall-resolved LES and zonal LES of round jet impingement heat transfer on a flat plate,” Num. Heat Tranf. Part B: Fundamentals, vol. 59, no. 3, pp. 190–208, March. 2011. DOI: 10.1080/10407790.2011.554495.
  • T. Cziesla, G. Biswas, H. Chattopadhyay, and N. K. Mitra, “Large-eddy simulation of flow and heat transfer in an impinging slot jet,” Int. J. Heat Fluid Flow, vol. 22, no. 5, pp. 500–508, October. 2011. DOI: 10.1016/S0142-727X(01)00105-9.
  • T. Dairay, V. Fortuné, E. Lamballais, and L. E. Brizzi, “LES of a turbulent jet impinging on a heated wall using high-order numerical schemes,” Int. J. Heat Fluid Flow, vol. 50, pp. 177–187, September. 2014. DOI: 10.1016/j.ijheatfluidflow.2014.08.001.
  • S. Ashforth-Frost and K. Jambunathan, “Effect of nozzle geometry and semi-confinement on the potential core of a turbulent axisymmetric free jet,” Int. Com. Heat Mass Tranf, vol. 23, no. 2, pp. 155–162, April. 1996. DOI: 10.1016/0735-1933(96)00001-2.
  • D. Singh, B. Premachandran, and S. Kohli, “Experimental and numerical investigation of jet impingement cooling of a circular cylinder,” Int. J. Heat Mass Tranf, vol. 60, pp. 672–688, May. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.01.008.
  • T. Craft, L. Graham, and B. Launder, “Impinging jet studies for turbulence model assessment II. An examination of the performance of four turbulence models,” Int. J. Heat Mass Transf, vol. 36, no. 10, pp. 2685–2697, July. 1993. DOI: 10.1016/S0017-9310(05)80205-4.
  • J. Issac, D. Singh, and S. Kango, “Experimental and numerical investigation of heat transfer characteristics of jet impingement on a flat plate,” J. Heat Mass Transf, vol. 55, pp. 531–546, August. 2019. DOI: 10.1007/s00231-019-02724-9.
  • M. Kim, H. R. Karbasian, and E. Yeom, “Transient three-dimensional flow structures of oblique jet impingement on a circular cylinder,” J. Vis, vol. 21, no. 3, pp. 397–406, December. 2017. DOI: 10.1007/s12650-017-0466-y.
  • B. Kok, Y. Varol, H. Ayhan, and H. F. Oztop, “Experimental study and large eddy simulation of a coaxial jet with perforated obstacles to control thermal mixing characteristics,” Exp. Heat Transf, vol. 31, no. 2, pp. 161–182, 2018. DOI: 10.1080/08916152.2017.1405100.
  • F. Ducros and T. P. Nicoud, “Wall-adapting local eddy-viscosity models for simulations in complex geometries,”Conf. Numerical. Methods Fluid Dyn, vol.6, 1–7, January. 1998.
  • M. Weickert, G. Teike, O. Schmidt, and M. Sommerfeld, “Investigation of the LES WALE turbulence model within the lattice boltzmann framework,” Comput. Math. Appl, vol. 59, no. 7, pp. 2200–2214, April. 2010. DOI: 10.1016/j.camwa.2009.08.060.
  • S. Rhea, M. Bini, M. Fairweather, and W. P. Jones, “RANS modelling and LES of a single-phase, impinging plane jet,” Comput. Chem. Eng, vol. 33, no. 8, pp. 1344–1353, August. 2009. DOI: 10.1016/j.compchemeng.2009.01.020.
  • G. Lodato, L. Vervisch, and P. Domingo, “A compressible wall-adapting similarity mixed model for large-eddy simulation of impinging round jet,” Phys. Fluids, vol. 21, no. 3, pp. 1–21, March. 2009. DOI: 10.1063/1.3068761.
  • A. K. Sharma and S. K. Sahu, “An experimental study on heat transfer and rewetting behaviour of hot horizontal downward facing hot surface by mist jet impingement,” App. Therm. Eng, vol. 151, pp. 459–474, March. 2019. DOI: 10.1016/j.applthermaleng.2019.02.038.
  • M. K. Agrawal and S. K. Sahu, “An experimental study on the rewetting of hot vertical surface by circular water jet impingement,” Exp. Heat Transf, vol. 29, no. 2, pp. 151–172, January. 2015. DOI: 10.1080/08916152.2014.973973.
  • M. Modak, K. Garg, S. Srinivasan, and S. K. Sahu, “Theoretical and experimental study on heat transfer characteristics of normally impinging two dimensional jets on a hot surface,” Int. J. Heat Mass Tranf, vol. 112, pp. 174–187, February. 2017. DOI: 10.1016/j.ijthermalsci.2016.10.009.
  • R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci, vol. 1, pp. 3–17, January. 1998. DOI: 10.1016/0894-1777(88)90043-X.
  • J. Smagorinsky, “General circulation experiments with the primitive equations: i The basic experiment,” Monthly Weather Review, vol. 91, no. 3, pp. 99–164, 1963. DOI: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
  • W.W. Kim and S. Menon, “A new dynamic one-equation subgrid-scale model for large eddy simulations,” In 33rd Aerospace Sciences Meeting and Exhibit, Reno, NV, U.S.A., August, 1995, DOI: 10.2514/6.1995-356.
  • F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA- J, vol. 32, no. 8, pp. 1598–1605, 1994. DOI: 10.2514/3.12149.
  • J. E. Jaramillo, C. D. Perez-Segarra, I. Rodriguez, and A. Oliva, “Numerical study of plane and round impinging jets using RANS models,” Num. Heat Transf. Part B: Fundamentals, vol. 54, no. 3, pp. 213–237, July. 2018. DOI: 10.1080/10407790802289938.
  • M. A. R. Sharif and K. K. Mothe, “Evaluation of turbulence models in the prediction of heat transfer due to slot jet impingement on plane and concave surfaces,” Num. Heat Transf. Part B: Fundamentals, vol. 55, no. 4, pp. 273–294, March. 2009. DOI: 10.1080/10407790902724602.
  • F. R. Menter, “Zonal two equation k-ω turbulence models for aerodynamic flows,” AIAA, vol. 93-2906, 1993. DOI: 10.2514/6.1993-2906.
  • A. K. Shukla and A. Dewan, “Open FOAM based LES of slot jet impingement heat transfer at low nozzle to plate spacing using four SGS models,” Heat Mass Transf, vol. 55, no. 3, pp. 911–931, September. 2019. DOI: 10.1007/s00231-018-2470-8.
  • R. Dutta, A. Dewan, and B. Srinivasan, “Large eddy simulation of turbulent slot jet impingement heat transfer at small nozzle-to-plate spacing,” Heat Transf. Eng, vol. 37, no. 15, pp. 1242–1251, March. 2016. DOI: 10.1080/01457632.2015.1119592.
  • S. B. Pope, “Ten questions concerning the large eddy simulation of turbulent flows,” New J. Phys, vol. 6, no. 35, pp. 1–6, March. 2004. DOI: 10.1088/1367-2630/6/1/035.
  • I. B. Celik, Z. N. Cehreli, and I. Yavuz, “Index of resolution quality for large eddy simulations,” ASME J Fluids Eng, vol. 127, no. 5, pp. 949–958, September. 2005. DOI: 10.1115/1.1990201.
  • A. H. Beitelmal, M. A. Saad, and C. D. Patel, “The effect of inclination on the heat transfer between a flat surface and an impinging two-dimensional air jet,” Int. J. Heat Fluid Flow, vol. 21, no. 2, pp. 156–163, 2000. DOI: 10.1615/JFlowVisImageProc.2021033938.
  • N. Uddin, S. O. Neumann, B. Weigand, and B. A. Younis, “Large-eddy simulations and heat-flux modelling in a turbulent impinging jet,” Num. Heat Transf. Part A: Appl, vol. 55, no. 10, pp. 906–930, May. 2009. DOI: 10.1080/10407780902959324.
  • M. Behania, S. Parneix, and P. A. Durbin, “Prediction of heat transfer in an axisymmetric turbulent jet impinging on the flat plate,” Int. J. Heat Mass Transf, vol. 41, no. 12, pp. 1845–1855, June. 1998. DOI: 10.1016/S0017-9310(97)00254-8.
  • P. A. Durbin, “On the k-ε stagnation point anomaly,” Int. J. Heat Fluid Flow, vol. 17, no. 1, pp. 89–90, 1996. DOI: 10.1016/0142-727X(95)00073-Y.
  • C. R. Yap, “Turbulent heat and momentum transfer in recirculating and impinging flows”, Ph. D. thesis, University of Manchester, Manchester 1987.
  • S. Pawar, D. K. Patel, M. Bisoi, and S. Roy, “A comparative turbulent flow study of unconfined orthogonal and oblique slot impinging jet using large-eddy simulation,” Phys. Fluids, vol. 32, no. 9, pp. 95–116, September. 2020. DOI: 10.1063/5.0021426.
  • N. Uddin, “Turbulence modeling of complex flows in CFD”, Ph.D. thesis, Institute of Aerospace Thermodynamics, Universität Stuttgart 2008.
  • S. Maurel and C. Solliec, “A turbulent plane jet impinging nearby and far from a flat plate,” Exp. Fluids, vol. 31, no. 6, pp. 69–687, December. 2001. DOI: 10.1007/s003480100327.
  • S. P. Sutera, P. F. Maeder, and J. Kestin, “On the sensitivity of heat transfer in the stagnation-point boundary layer to free-stream vorticity,” J. Fluid Mech, vol. 16, no. 4, pp. 497–520, 1963. DOI: 10.1017/S0022112063000963.
  • S. P. Sutera, “Vorticity amplification in stagnation-point flow and its effect on heat transfer,” J. Fluid Mech, vol. 21, no. 3, pp. 513–534, 1965. DOI: 10.1017/S0022112065000307.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.