Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 36, 2023 - Issue 1
223
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Heat transfer performance of microchannels with round grooves and ribs based on field synergy principle and entropy production analysis

, , &
Pages 47-74 | Received 23 Mar 2022, Accepted 01 Jul 2022, Published online: 21 Jul 2022

References

  • G. K. Marri and C. Balaji, “Effect of phase change temperatures and orientation on the thermal performance of a miniaturized PCM heat sink coupled heat pipe[J],” Exp. Heat Transfer, pp. 1–23, 2022. DOI: 10.1080/08916152.2022.2073487.
  • B. Lu and W. J. Meng, “Microelectronic chip cooling: an experimental assessment of a liquid-passing heat sink, a microchannel heat rejection module, and a microchannel-based recirculating-liquid cooling system[J],” Microsyst. Technol, vol. 18, no. 3, pp.341–352, 2012. DOI: 10.1007/s00542-011-1397-5.
  • Y. Han, et al., “A review of development of micro-channel heat exchanger applied in air-conditioning system[J],” Energy Procedia, vol. 14, no. 18, pp. 148–153, 2012. DOI: 10.1016/j.egypro.2011.12.910.
  • M. Ohadi, et al. “Next Generation Microchannel Heat Exchangers || Emerging Applications of Microchannels [J],” Springer Briefs Appl. Sci. Technol, pp. 67–105, 2013. DOI: 10.1007/978-1-4614-0779-9_3.
  • M. Fadl and P. C. Eames, “Thermal performance evaluation of a latent heat thermal energy storage unit with an embedded multi-tube finned copper heat exchanger[J],” Exp. Heat Transfer, pp. 1–20, 2021. DOI: 10.1080/08916152.2021.1984342.
  • C. Suresh and R. P. Saini, “Performance comparison of sensible and latent heat-based thermal storage system during discharging–an experimental study[J],” Exp. Heat Transfer, vol. 35, no. 1, pp.45–61, 2022. DOI: 10.1080/08916152.2020.1817178.
  • C. Yadav and R. R. Sahoo, “Effect of nano-enhanced PCM on the thermal performance of a designed cylindrical thermal energy storage system[J],” Exp. Heat Transfer, vol. 34, no. 4, pp.356–375, 2021. DOI: 10.1080/08916152.2020.1751744.
  • G. D. Xia, L. Chai, and M. Z. Zhou, “Effects of structural parameters on fluid flow and heat transfer in a microchannel with aligned fan-shaped reentrant cavities[J],” Int. J. Therm. Sci, vol. 50, no. 3, pp.411–419, 2011. DOI: 10.1016/j.ijthermalsci.2010.08.009.
  • J. L. Xu, Y. H. Gan, D. C. Zhang, and X. H. Li, “Microscale heat transfer enhancement using thermal boundary layer redeveloping concept[J],” Int J Heat Mass Transf, vol. 48, no. 9, pp.1662–1674, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.12.008.
  • H. Li, L. U. Hui, H. Li, J. C. Chai, and X. Duan, “Parametric numerical study of the flow and heat transfer in microchannel with dimples[J],” Int. Commun. Heat Mass Transfer, vol. 76, pp. 348–357, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.06.002.
  • G. D. Xia, L. Chai, H. Y. Wang, M. Zhou, and Z. Cui, “Optimum thermal design of microchannel heat sink with triangular reentrant cavities[J],” Appl. Therm. Eng, vol. 31, no. 6–7, pp.1208–1219, 2011. DOI: 10.1016/j.applthermaleng.2010.12.022.
  • G. D. Xia, L. Chai, M. Z. Zhou, and H. Wang, “Effects of structural parameters on fluid flow and heat transfer in a microchannel with aligned fan-shaped reentrant cavities[J],” Int. J. Therm. Sci, vol. 50, pp. 411–419, 2011.
  • L. Chai, G. D. Xia, M. Z. Zhou, and J. Li, “Numerical simulation of fluid flow and heat transfer in a microchannel heat sink with offset fan-shaped reentrant cavities in sidewall[J],” Int. Commun. Heat Mass Transfer, vol. 38, no. 5, pp.577–584, 2011. DOI: 10.1016/j.icheatmasstransfer.2010.12.037.
  • L. Chai, G. D. Xia, L. Wang, M. Zhou, and Z. Cui, “Heat transfer enhancement in microchannel heat sinks with periodic expansion-constriction cross-sections[J],” Int J Heat Mass Transf, vol. 62, no. 1, pp.741–751, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.03.045.
  • M. Q. Pan, H. Q. Wang, and Y. J. Zhong, “Experimental investigation of the heat transfer performance of microchannel heat exchangers with fan-shaped cavities [J],” Int J Heat Mass Transf, vol. 134, no. 1, pp.1199–1208, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.140.
  • H. E. Ahmed and M. I. Ahmed, “Optimum thermal design of triangular, trapezoidal and rectangular grooved microchannel heat sinks[J],” Int. Commun. Heat Mass Transfer, vol. 66, pp. 47–57, 2015. DOI: 10.1016/j.icheatmasstransfer.2015.05.009.
  • Z. Y. Guo, D. Y. Li, and B. X. Wang, “A novel concept for convective heat transfer enhancement[J],” Int J Heat Mass Transf, vol. 41, no. 14, pp.2221–2225, 1998. DOI: 10.1016/S0017-9310(97)00272-X.
  • Y. Jin, et al., “Parametric study and field synergy principle analysis of H-type finned tube bank with 10 rows[J],” Int J Heat Mass Transf, vol. 60, pp. 241–251, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.11.043.
  • J. M. Wu and W. Q. Tao, “Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part A: verification of field synergy principle[J],” Int J Heat Mass Transf, vol. 51, no. 5, pp.1179–1191, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.03.032.
  • Z. Y. Guo, W. Q. Tao, and R. K. Shah, “The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer[J],” Int J Heat Mass Transf, vol. 48, no. 9, pp.1797–1807, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.11.007.
  • L. Wei, et al., “Physical quantity synergy in laminar flow field and its application in heat transfer enhancement[J],” Int J Heat Mass Transf, vol. 52, no. 19–20, pp. 4669–4672, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.02.018.
  • Y. P. Cheng, T. S. Lee, and H. T. Low, “Numerical simulation of conjugate heat transfer in electronic cooling and analysis based on field synergy principle[J],” Appl. Therm. Eng, vol. 28, no. 14, pp.1826–1833, 2008. DOI: 10.1016/j.applthermaleng.2007.11.008.
  • Y. Zhai, et al., “Analysis of field synergy principle and the relationship between secondary flow and heat transfer in double-layered microchannels with cavities and ribs[J],” Int J Heat Mass Transf, vol. 101, pp. 190–197, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.025.
  • A. Bejan, Entropy Generation Minimization [M]. New York: whey-Interscience Publication, 1996.
  • Y. Leong and O. Hwai, “Entropy generation analysis of nanofluids flow in various shapes of cross section ducts [J],” Int. Commun. Heat Mass Transfer, vol. 57, pp. 72–78, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.07.017.
  • Y. L. Zhai, et al., “Heat transfer in the microchannels with fan-shaped reentrant cavities and different ribs based on field synergy principle and entropy generation analysis[J],” Int J Heat Mass Transf, vol. 68, no. 1, pp. 224–233, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.08.086.
  • M. Li and A. C. K. Lai, “Thermodynamic optimization of ground heat exchangers with single U-tube by entropy generation minimization method[J],” Energy Convers. Manage, vol. 65, pp. 133–139, 2013. DOI: 10.1016/j.enconman.2012.07.013.
  • T. Hou and Y. Chen, “Pressure drop and heat transfer performance of microchannel heat exchanger with circular reentrant cavities and ribs[J],” J Heat Transfer, vol. 142, no. 4, pp.042502.1–042502.11, 2020. DOI: 10.1115/1.4045759.
  • T. Hou and Y. Chen, “Pressure drop and heat transfer performance of microchannel heat exchanger with different reentrant cavities[J],” Chem. Eng. Process, vol. 153, no. 15–16, pp.107931, 2020. DOI: 10.1016/j.cep.2020.107931.
  • M. Pan, M. Hu, and H. Wang, “Study of the performance of an integrated liquid cooling heat sink for high-power IGBTs[J],” Appl. Therm. Eng, vol. 190, pp. 116827, 2021. DOI: 10.1016/j.applthermaleng.2021.116827.
  • X. Ji, J. Xu, and A. M. Abanda, “Copper foam based vapor chamber for high heat flux dissipation[J],” Exp. Therm Fluid Sci, vol. 40, pp. 93–102, 2012. DOI: 10.1016/j.expthermflusci.2012.02.004.
  • M. C. Tsai, S. W. Kang, and K. V. de Paiva, “Experimental studies of thermal resistance in a vapor chamber heat spreader[J],” Appl. Therm. Eng, vol. 56, no. 1–2, pp.38–44, 2013. DOI: 10.1016/j.applthermaleng.2013.02.034.
  • R. J. Moffat, “Describing the uncertainties in experimental results[J],” Exp. Therm Fluid Sci, vol. 1, no. 1, pp.3–17, 1988. DOI: 10.1016/0894-1777(88)90043-X.
  • S. M. Yang and W. Q. Tao, Heat Transfer, third ed. Beijing: Higher Education Press, 1998.
  • P. Huang and M. Pan, “Secondary heat transfer enhancement design of variable cross-section microchannels based on entransy analysis[J],” Renewable Sustainable Energy Rev, vol. 141, pp. 110834, 2021.
  • R. K. Shah and A. L. London, Laminar Flow Forced Convection in Ducts [M]. New York: Academic Press, 1978.
  • S. Kandlikar, et al., Heat Transfer and Fluid Flow in Minichannels and microchannels[M]. Elsevier, 2005.
  • P. Huang and M. Pan, “Secondary heat transfer enhancement design of variable cross-section microchannels based on entransy analysis[J],” Renewable Sustainable Energy Rev, vol. 141, no. 5, pp.110834, 2021. DOI: 10.1016/j.rser.2021.110834.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.