Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 37, 2024 - Issue 1
292
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental Study on the Melting Behavior of a Phase Change Material under Random Vibration

&
Pages 98-118 | Received 30 Mar 2022, Accepted 12 Jul 2022, Published online: 27 Jul 2022

References

  • D. Sziroczak and H. Smith, “A review of design issues specific to hypersonic flight vehicles,” Prog. Aerosp. Sci, vol. 84, pp. 1–28, 2016. DOI: 10.1016/j.paerosci.2016.04.001.
  • Y. ZHU, W. Peng, R. Xu, and P. JIANG, “Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles,” Chin. J. Aeronaut, vol. 31, no. 10, pp.1929–1953, 2018. DOI: 10.1016/j.cja.2018.06.011.
  • G. F. R. Duarte, M. G. Silva, and B. D. M. Castro, “Aerodynamic heating of missile/rocket - conceptual design phase,” in Proceedings of COBEM 2009, 20th International Congress of Mechanical Engineering, Gramado, RS, Brazil, 2009.
  • E. L. Fleeman and G. Lilburn. Tactical Missile Design, 2nd ed. Reston, VA: American Institute of Aeronautics and Astronautics, Inc, 2006.
  • C. L. Clay, “High speed flight vehicle structures: an overview,” J. Aircr, vol. 41, no. 5, pp.978–985, 2004. DOI: 10.2514/1.3880.
  • D. E. Glass, “Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles,” in 15th AIAA Space Planes and Hypersonic Systems and Technologies Conference, NASA Langley Research Center, Hampton, VA, 2008.
  • T. G. S. Lago, K. A. R. Ismail, F. A. M. Lino, and A. Arabkoohsar, “Experimental correlations for the solidification and fusion times of PCM encapsulated in spherical shells,” Exp. Heat Transfer, vol. 33, no. 5, pp.440–454, 2020. DOI: 10.1080/08916152.2019.1656301.
  • A. Sharma, V. Tyagi, C. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications,” Renewable Sustainable Energy Rev, vol. 13, pp. 318–345, 2009. DOI: 10.1016/j.rser.2007.10.005.
  • M. M. Farid, A. M. Khudhair, S. A. K. Razack, and S. Al-Hallaj, “A review on phase change energy storage: materials and applications,” Energy Convers. Manage, vol. 45, pp. 1597–1615, 2004. DOI: 10.1016/j.enconman.2003.09.015.
  • B. Zalba, J. M. Marin, L. F. Cabeza, and H. Mehling, “Review on thermal energy storage with phase change: materials, heat transfer analysis and applications,” Appl. Therm. Eng, vol. 23, pp. 251–283, 2003. DOI: 10.1016/S1359-4311(02)00192-8.
  • M. Fadl and P. C. Eames, “Thermal performance evaluation of a latent heat thermal energy storage unit with an embedded multi-tube finned copper heat exchanger,” Exp. Heat Transfer, pp. 1–20, 2021. DOI: 10.1080/08916152.2021.1984342.
  • M. Mofijur, et al., “Phase change materials (PCM) for solar energy usages and storage: an overview,” Energies, vol. 12, pp. 3167, 2019. DOI: 10.3390/en12163167.
  • Y. H. Diao, S. Wang, C. Z. Li, Y. H. Zhao, and T. T. Zhu, “Experimental study on the heat transfer characteristics of a new type flat micro heat pipe heat exchanger with latent heat thermal energy storage,” Exp. Heat Transfer, vol. 30, no. 2, pp.91–111, 2017. DOI: 10.1080/08916152.2016.1179355.
  • Y. Ganatra, J. Ruiz, J. A. Howarter, and A. Marconnet, “Experimental investigation of phase change materials for thermal management of handheld devices,” Int. J. Therm. Sci, vol. 129, pp. 358–364, 2018. DOI: 10.1016/j.ijthermalsci.2018.03.012.
  • K. Jiang, et al., “Thermal management technology of power lithium-ion batteries based on the phase transition of materials: a review,” J Energy Storage, vol. 32, pp. 101816, 2020. DOI: 10.1016/j.est.2020.101816.
  • J. Jaguemont, N. Omar, P. V. D. Bossche, and J. Mierlo, “Phase-change materials (PCM) for automotive applications: a review,” Appl. Therm. Eng, vol. 132, pp. 308–320, 2018. DOI: 10.1016/j.applthermaleng.2017.12.097.
  • C. Gau and R. Viskanta, “Effect of natural convection on solidification from above and melting from below of a pure metal,” Int. Heat Mass Transfer, vol. 28, no. 3, pp.573–587, 1985. DOI: 10.1016/0017-9310(85)90180-2.
  • C. Gau and R. Viskanta, “Melting and solidification of a pure metal on a vertical wall,” Int J Heat Transfer, vol. 108, pp. 174–181, 1986. DOI: 10.1115/1.3246884.
  • C. Benard, D. Gobin, and F. Martinez, “Melting in rectangular enclosures: experiments and numerical simulations,” J Heat Transfer, vol. 107, pp. 794–803, 1985. DOI: 10.1115/1.3247506.
  • Y. Wang, A. Amiri, and K. Vafai, “An experimental investigation of the melting process in a rectangular enclosure,” Int J Heat Mass Transf, vol. 42, pp. 3659–3672, 1999. DOI: 10.1016/S0017-9310(99)00024-1.
  • A. F. Regin, S. Solanki, and J. Saini, “Latent heat thermal energy storage using cylindrical capsule: numerical and experimental investigations,” Renewable Energy, vol. 31, pp. 2025–2041, 2006. DOI: 10.1016/j.renene.2005.10.011.
  • E. Assis, L. Katsman, G. Ziskind, and R. Letan, “Numerical and experimental study of melting in a spherical shell,” Int J Heat Mass Transf, vol. 50, pp. 1790–1804, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.10.007.
  • F. Tan, “Constrained and unconstrained melting inside a sphere,” Int. Commun. Heat Mass Transfer, vol. 35, pp. 466–475, 2008. DOI: 10.1016/j.icheatmasstransfer.2007.09.008.
  • F. Tan, S. Hosseinizadeh, J. Khodadadi, and L. Fan, “Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule,” Int J Heat Mass Transf, vol. 52, pp. 3464–3472, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.02.043.
  • M. Rizan, F. Tan, and C. Tso, “An experimental study of n-octadecane melting inside a sphere subjected to constant heat rate at surface,” Int. Commun. Heat Mass Transfer, vol. 39, pp. 1624–1630, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.08.003.
  • H. Shokouhmand and B. Kamkari, “Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit,” Exp. Therm Fluid Sci, vol. 50, pp. 201–212, 2013. DOI: 10.1016/j.expthermflusci.2013.06.010.
  • B. Kamkari and H. Shokouhmand, “Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins,” Int J Heat Mass Transf, vol. 78, pp. 839–851, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.056.
  • B. Kamkari, H. Shokouhmand, and F. Bruno, “Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure,” Exp. Therm Fluid Sci, vol. 72, pp. 186–200, 2014.
  • B. Kamkari and D. Groulx, “Experimental investigation of melting behaviour of phase change material in finned rectangular enclosures under different inclination angles,” Exp. Therm Fluid Sci, vol. 97, pp. 94–108, 2018. DOI: 10.1016/j.expthermflusci.2018.04.007.
  • M. Joneidi, M. Hosseini, A. Ranjbar, and R. Bahrampoury, “Experimental investigation of phase change in a cavity for varying heat flux and inclination angles,” Exp. Therm Fluid Sci, vol. 88, pp. 594–607, 2017. DOI: 10.1016/j.expthermflusci.2017.07.017.
  • M. Avci and M. Y. Yazici, “An experimental study on effect of inclination angle on the performance of a PCM-based flat-type heat sink,” Appl. Therm. Eng, vol. 131, pp. 806–814, 2018. DOI: 10.1016/j.applthermaleng.2017.12.069.
  • J. Vogel and A. Thess, “Validation of a numerical model with a benchmark experiment for melting governed by natural convection in latent thermal energy storage,” Appl. Therm. Eng, vol. 148, pp. 147–159, 2019. DOI: 10.1016/j.applthermaleng.2018.11.032.
  • R. Baby and C. Balaji, “A neural network-based optimization of thermal performance of phase change material-based finned heat sinks—an experimental study,” Exp. Heat Transfer, vol. 26, no. 5, pp.431–452, 2013. DOI: 10.1080/08916152.2012.705573.
  • C. Yadav and R. R. Sahoo, “Effect of nano-enhanced PCM on the thermal performance of a designed cylindrical thermal energy storage system,” Exp. Heat Transfer, vol. 34, no. 4, pp.356–375, 2021. DOI: 10.1080/08916152.2020.1751744.
  • S. K. Singh and J. Sarkar, “Experimental hydrothermal characteristics of concentric tube heat exchanger with V-cut twisted tape turbulator using PCM dispersed mono/hybrid nanofluids,” Exp. Heat Transfer, vol. 34, no. 5, pp.421–442, 2021. DOI: 10.1080/08916152.2020.1772412.
  • Y. Wang, J. L. Alvarado, and W. Terrell Jr, “Thermal performance of microencapsulated phase change material slurry in helical coils with reversed loops and wire coil inserts,” Exp. Heat Transfer, pp. 1–28, 2022. DOI: 10.1080/08916152.2022.2085822.
  • A. M. A. Soliman, M. S. Yousef, S. Ookawara, and H. Hassan, “Experimental study of using system of flat heat pipe-phase change material inclusion heat sink for thermal regulation of simulated PV,” Exp. Heat Transfer, pp. 1–17, 2022. DOI: 10.1080/08916152.2022.2071359.
  • G. K. Marri and C. Balaji, “Effect of phase change temperatures and orientation on the thermal performance of a miniaturized PCM heat sink coupled heat pipe,” Exp. Heat Transfer, pp. 1–23, 2022. DOI: 10.1080/08916152.2022.2073487.
  • M. Kumar, T. N. Rao, K. Jagadisan, and K. J. Rao, “Tailoring of vibration test specifications for a flight vehicle,” Def Sci J, vol. 52, no. 1, pp.41–45, 2002. DOI: 10.14429/dsj.52.2147.
  • US Department of Defense, “MIL-STD-810H, test method standards, environmental engineering considerations and laboratory tests”,2019.
  • D. L. Gregory, J. S. Cap, and T. C. Togami. Multi-Exciter Vibroacoustic Simulation of Hypersonic Flight Vibration. Albuquerque, NM, USA: Engineering Sciences Center, Sandia National Laboratories, 1999.
  • R. E. Forbes, C. T. Carley, and C. J. Bell, “Vibration effects on convective heat transfer in enclosures,” J Heat Transfer, vol. 92, pp. 429–438, 1970. DOI: 10.1115/1.3449681.
  • A. A. Ivanova and V. G. Kozlov, “Vibrationally gravitational convection in a horizontal cylindrical layer,” Heat Transfer-Soviet Res, vol. 20, pp. 235–247, 1988.
  • W. S. Fu and W. J. Shieh, “A study of thermal convection in an enclosure induced simultaneously by gravity and vibration,” Int J Heat Mass Transf, vol. 35, pp. 1695–1710, 1992. DOI: 10.1016/0017-9310(92)90140-N.
  • W. S. Fu and W. J. Shieh, “Transient thermal convection in an enclosure induced simultaneously by gravity and vibration,” Int J Heat Mass Transf, vol. 36, pp. 437–452, 1993. DOI: 10.1016/0017-9310(93)80019-Q.
  • W.-S. Fu and C.-P. Huang, “Effects of a vibrational heat surface on natural convection in a vertical channel flow,” Int J Heat Mass Transf, vol. 49, pp. 1340–1349, 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.10.028.
  • H. J. Kim and J. H. Jeong, “Numerical analysis of experimental observations for heat transfer augmentation by ultrasonic vibration,” Heat Transfer Eng, vol. 27, no. 2, pp.14–22, 2006. DOI: 10.1080/01457630500397161.
  • A. M. Salh, K. A. Al-Tae᾽y, and B. K. Khudhair, “Experimental study of natural convection heat transfer in an enclosed vibration cavity,” J Energy Technol Policy, vol. 4, no. 10, pp. 1–16, 2014.
  • W. Liu, Z. Yang, B. Zhang, and P. Lv, “Experimental study on the effects of mechanical vibration on the heat transfer characteristics of tubular laminar flow,” Int J Heat Mass Transf, vol. 115, pp. 169–179, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.07.025.
  • S.-W. Chen, F.-C. Liu, and H.-J. Lin, “Experimental test and empirical correlation development for heat transfer enhancement under ultrasonic vibration,” Appl. Therm. Eng, vol. 639-649, pp. 143, 2018.
  • A. Shirvanian, M. Faghri, Z. Zhang, and Y. Asako, “Numerical solution of the effect of vibration on melting of unfixed rectangular phase-change material under variable-gravity environment,” Numer. Heat Transfer, Part A, vol. 34, pp. 257–278, 1998. DOI: 10.1080/10407789808913986.
  • Y. Oh, S. Park, and Y. Cho, “A study of the effect of ultrasonic vibrations on phase-change heat transfer,” Int J Heat Mass Transf, vol. 45, pp. 4631–4641, 2002. DOI: 10.1016/S0017-9310(02)00162-X.
  • J. J. Vadasz, J. P. Meyer, S. Govender, and G. Ziskind, “Experimental study of vibration effects on heat transfer during solidification of paraffin in a spherical shell,” Exp. Heat Transfer, vol. 29, no. 3, pp.285–298, 2016. DOI: 10.1080/08916152.2014.973981.
  • M. Hajiyan, M. Al-Jethelah, and Y. Alomair, “Effect of vibration on the melting of phase change material inside a cylindrical enclosure,” in Proceedings of the 5th International Conference of Fluid Flow, Heat and Mass Transfer (FFHMT’18), Niagara Falls, Canada, 2018.
  • N. Zhang and Y. Du, “Ultrasonic enhancement on heat transfer of palmitic-stearic acid as PCM in unit by experimental study,” Sustainable Cities Soc, vol. 43, pp. 532–537, 2018. DOI: 10.1016/j.scs.2018.08.040.
  • Sigma-Aldrich, “Safety Data Sheet (Paraffin Wax 327212)”, 2020.
  • Z. Zhang and A. Bejan, “Melting in an enclosure heated at constant rate,” Int J Heat Mass Transf, vol. 32, no. 6, pp.1063–1076, 1989. DOI: 10.1016/0017-9310(89)90007-0.
  • J. D. Cressler and H. A. Mantooth. Extreme Environment Electronics. Boca Raton, FL: CRC Press, 2017.
  • H. W. Coleman and W. G. Steele. Experimentation and Uncertainty Analysis for Engineers 2nd Edition. New York, NY: John Wiley & Sons, 1999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.