Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 37, 2024 - Issue 2
201
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Parametric optimization of solar air heater having sine wave baffles as turbulators

, &
Pages 182-207 | Received 28 Apr 2022, Accepted 27 Jul 2022, Published online: 04 Aug 2022

References

  • D. Wang, et al., “Evaluation of the performance of an improved solar air heater with ‘S’ shaped ribs with gap,” Sol. Energy, vol. 195, no. 13, pp. 89–101, 2020. DOI: 10.1016/j.solener.2019.11.034.
  • K. Kulkarni, A. Afzal, and K. Y. Kim, “Multi-objective optimization of solar air heater with obstacles on absorber plate,” Sol. Energy, vol. 114, pp. 364–377, 2015. DOI:10.1016/j.solener.2015.02.008.
  • T. Alam and M. Kim, “A critical review on arti fi cial roughness provided in rectangular solar air heater duct,” Renew. Sustain. Energy Rev, vol. 69, no. October 2016, pp. 387–400, 2017. DOI: 10.1016/j.rser.2016.11.192.
  • T. Alam and M. Kim, “Numerical study on thermal hydraulic performance improvement in solar air heater duct with semi ellipse shaped obstacles,” Energy, vol. 112, pp. 588–598, 2016. DOI:10.1016/j.energy.2016.06.105.
  • A. K. Raj, M. Srinivas, and S. Jayaraj, “A cost-e ff ective method to improve the performance of solar air heaters using discrete macro-encapsulated PCM capsules for drying applications,” Appl. Therm. Eng, vol. 146, no. October 2018, pp. 910–920, 2019. DOI: 10.1016/j.applthermaleng.2018.10.055.
  • S. Sharma, R. K. Das, and K. Kulkarni, “Performance Evaluation of Solar Air Heater Using Sine Wave Shape Obstacle,” Curr. Adv. Mech. Eng, vol. 1, pp. 541–553, 2021.
  • S. Kumar, R. Kumar, and K. Kulkarni, “Case Studies in Thermal Engineering Comparative study of solar air heater (SAH) roughened with transverse ribs of NACA 0020 in forward and reverse direction,” Case Stud. Therm. Eng, vol. 34, no. April, pp. 102015, 2022. DOI: 10.1016/j.csite.2022.102015.
  • R. Maithani, A. Kumar, and S. Sharma, “Effect of straight slot rib height on heat transfer enhancement of nanofluid flow through rectangular channel,” Mater. Today Proc, 2021. DOI: 10.1016/j.matpr.2021.08.040.
  • S. Sharma, R. K. Das, and K. Kulkarni, “Computational and experimental assessment of solar air heater roughened with six different baffles,” Case Stud. Therm. Eng, vol. 27, pp. 101350, 2021. DOI:10.1016/j.csite.2021.101350.
  • A. Kumar, R. Maithani, A. Singh Yadav, and S. Sharma, “Effect of 450 protruded and dimpled rib height on the performance of triangular duct solar heat collector,” Mater. Today Proc, no. xxxx, 2022. DOI: 10.1016/j.matpr.2022.03.044.
  • A. Kumar and A. Layek, “Evaluation of the performance analysis of an improved solar air heater with Winglet shaped ribs,” Exp. Heat Transf, vol. 35, no. 3, pp. 239–257, 2022. DOI: 10.1080/08916152.2020.1838670.
  • V. P. Singh, S. Jain, and A. Kumar, “Establishment of correlations for the thermo-hydraulic parameters due to perforation in a multi-V rib roughened single pass solar air heater,” Exp. Heat Transf, pp. 1–20, 2022. DOI: 10.1080/08916152.2022.2064940.
  • T. Alam, C. S. Meena, N. B. Balam, A. Kumar, and R. Cozzolino, “Thermo-hydraulic performance characteristics and optimization of protrusion rib roughness in solar air heater,” Energies, vol. 14, no. 11, pp. 3159, 2021. DOI: 10.3390/EN14113159.
  • A. Khanlari, et al., “Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application,” Renew. Energy, vol. 145, pp. 1677–1692, 2020. DOI: 10.1016/j.renene.2019.07.076.
  • H. Olfian, A. Zabihi Sheshpoli, and S. S. Mousavi Ajarostaghi, “Numerical evaluation of the thermal performance of a solar air heater equipped with two different types of baffles,” Heat Transf. - Asian Res. no. December, pp. 1–21, 2020. DOI:10.1002/htj.21656.
  • T. Saravanakumar and D. Senthil Kumar, “Performance analysis on heat transfer characteristics of heat SINK with baffles attachment,” Int. J. Therm. Sci, vol. 142, no. March, pp. 14–19, 2019. DOI: 10.1016/j.ijthermalsci.2019.04.002.
  • F. Chabane, F. Grira, N. Moummi, and A. Brima, “Experimental study of a solar air heater by adding an arrangement of transverse rectangular baffles perpendicular to the air stream,” Int. J. Green Energy, vol. 16, no. 14, pp. 1264–1277, 2019. DOI: 10.1080/15435075.2019.1671401.
  • B. Sahin, I. Ates, E. Manay, A. Bayrakceken, and C. Celik, “Optimization of design parameters for heat transfer and friction factor in a heat sink with hollow trapezoidal baffles,” Appl. Therm. Eng, vol. 154, no. January, pp. 76–86, 2019. DOI: 10.1016/j.applthermaleng.2019.03.056.
  • A. J. Mahmood, “Experimental study of a solar air heater with a new arrangement of transverse longitudinal baffles,” J. Sol. Energy Eng. Trans. ASME, vol. 139, no. 3, pp. 1–12, 2017. DOI: 10.1115/1.4035756.
  • W. Fan, G. Kokogiannakis, and Z. Ma, “A multi-objective design optimisation strategy for hybrid photovoltaic thermal collector (PVT) -solar air heater (SAH) systems with fi ns,” Sol. Energy, vol. 163, no. September 2017, pp. 315–328, 2018. DOI: 10.1016/j.solener.2018.02.014.
  • S. S. Hosseini, A. Ramiar, and A. A. Ranjbar, “Numerical investigation of natural convection solar air heater with different fins shape,” Renew. Energy, vol. 117, pp. 488–500, 2018. DOI:10.1016/j.renene.2017.10.052.
  • H. M. Ali and W. Arshad, “International Journal of Heat and Mass Transfer Effect of channel angle of pin-fin heat sink on heat transfer performance using water based graphene nanoplatelets nanofluids,” Int. J. Heat Mass Transf, vol. 106, pp. 465–472, 2017. DOI:10.1016/j.ijheatmasstransfer.2016.08.061.
  • R. Kumar and P. Chand, “Performance enhancement of solar air heater using herringbone corrugated fins,” Energy, vol. 127, pp. 271–279, 2017. DOI:10.1016/j.energy.2017.03.128.
  • J. S. Sawhney, R. Maithani, and S. Chamoli, “Experimental investigation of heat transfer and friction factor characteristics of solar air heater using wavy delta winglets,” Appl. Therm. Eng, vol. 117, pp. 740–751, 2017. DOI:10.1016/j.applthermaleng.2017.01.113.
  • D. J. Dezan, A. D. Rocha, L. O. Salviano, and W. G. Ferreira, “Thermo-hydraulic optimization of a solar air heater duct with non-periodic rows of rectangular winglet pairs,” Sol. Energy, vol. 207, no. June, pp. 1172–1190, 2020. DOI: 10.1016/j.solener.2020.06.112.
  • S. Chamoli, N. S. Thakur, and J. S. Saini, “A review of turbulence promoters used in solar thermal systems,” Renew. Sustain. Energy Rev, vol. 16, no. 5, pp. 3154–3175, 2012. DOI: 10.1016/j.rser.2012.01.021.
  • R. Maithani, S. Chamoli, A. Kumar, and A. Gupta, “Solar air heater duct roughened with wavy delta winglets: correlations development and parametric optimization,” Heat Mass Transf. Und Stoffuebertragung, vol. 55, no. 12, pp. 3473–3491, 2019. DOI: 10.1007/s00231-019-02651-9.
  • N. Kumar, A. Kumar, and R. Maithani, “Development of new correlations for heat transfer and pressure loss due to internal conical ring obstacles in an impinging jet solar air heater passage,” Therm. Sci. Eng. Prog, vol. 17, no. February, pp. 100493, 2020. DOI: 10.1016/j.tsep.2020.100493.
  • S. Bhattacharyya, et al., “Thermodynamics and heat transfer study of a circular tube embedded with novel perforated angular-cut alternate segmental baffles,” J. Therm. Anal. Calorim, vol. 145, no. 3, pp. 1445–1465, 2021. DOI: 10.1007/s10973-021-10718-1.
  • R. Maithani, S. Sharma, and A. Kumar, “Thermo-hydraulic and exergy analysis of inclined impinging jets on absorber plate of solar air heater,” Renew. Energy, vol. 179, pp. 84–95, 2021. DOI:10.1016/j.renene.2021.07.013.
  • R. Maithani, R. Agarwal, A. Kumar, and S. Sharma, “Parametric optimization of impinging air jet on hemispherical protrusion of a solar thermal collector,” Exp. Heat Transf, pp. 1–22, 2022. DOI: 10.1080/08916152.2022.2075989.
  • A. Kumar, N. Kumar, S. Kumar, and R. Maithani, “Exergetic efficiency analysis of impingement jets integrated with internal conical ring roughened solar heat collector,” Exp. Heat Transf, pp. 1–21, 2021. DOI: 10.1080/08916152.2021.2002466.
  • S. Bhattacharyya, M. Pathak, M. Sharifpur, S. Chamoli, and D. R. E. Ewim, “Heat transfer and exergy analysis of solar air heater tube with helical corrugation and perforated circular disc inserts,” J. Therm. Anal. Calorim, no. m, 2020. DOI: 10.1007/s10973-020-10215-x.
  • R. Maithani, B. Kumar, S. Sharma, S. Kumar, and A. Kumar, “Effect of a unique winglet twisted tape insert on thermal and hydraulic properties of tubular heat exchanger,” Exp. Heat Transf, pp. 1–22, 2022. DOI: 10.1080/08916152.2022.2038725.
  • A. Sharma, G. Bharadwaj, and Varun, “Heat transfer and friction factor correlation development for double-pass solar air heater having V-shaped ribs as roughness elements,” Exp. Heat Transf, vol. 30, no. 1, pp. 77–90, 2017. DOI: 10.1080/08916152.2016.1161676.
  • I. Singh and S. Vardhan, “Experimental investigation of an evacuated tube collector solar air heater with helical inserts,” Renew. Energy, vol. 163, pp. 1963–1972, 2021. DOI:10.1016/j.renene.2020.10.114.
  • K. Nidhul, S. Kumar, A. K. Yadav, and S. Anish, “Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater : CFD and exergy analysis,” Energy, vol. 200, pp. 117448, 2020. DOI:10.1016/j.energy.2020.117448.
  • H. Hassan, S. Abo-elfadl, and M. F. El-dosoky, “An experimental investigation of the performance of new design of solar air heater (tubular),” Renew. Energy, vol. 151, pp. 1055–1066, 2020. DOI:10.1016/j.renene.2019.11.112.
  • C. Sivakandhan, T. V. Arjunan, and M. M. Matheswaran, “Thermohydraulic performance enhancement of a new hybrid duct solar air heater with inclined rib roughness,” Renewable Energy, vol. 147, pp. 2345–2357, 2020. DOI:10.1016/j.renene.2019.10.007.
  • A. Kumar, R. P. Saini, and J. S. Saini, “Numerical simulation of effective efficiency of a discrete multi V-pattern rib solar air channel,” Heat Mass Transf, vol. 52, no. 10, pp. 2051–2065, 2016. DOI: 10.1007/s00231-015-1712-2.
  • R. Maithani and J. S. Saini, “Performance evaluation of solar air heater having V-ribs with symmetrical gaps in a rectangular duct of solar air heater,” Int. J. Ambient Energy, vol. 38, no. 4, pp. 400–410, 2017. DOI: 10.1080/01430750.2015.1133455.
  • P. T. Saravanakumar, D. Somasundaram, and M. M. Matheswaran, “Exergetic investigation and optimization of arc shaped rib roughened solar air heater integrated with fins and baffles,” Appl. Therm. Eng, vol. 175, no. March, pp. 115316, 2020. DOI: 10.1016/j.applthermaleng.2020.115316.
  • A. Priyam and P. Chand, “Effect of wavelength and amplitude on the performance of wavy finned absorber solar air heater,” Renew. Energy, vol. 119, pp. 690–702, 2018. DOI:10.1016/j.renene.2017.12.010.
  • H. Hassan, M. S. Yousef, and S. Abo-elfadl, “Energy, exergy, economic and environmental assessment of double pass V-corrugated-perforated finned solar air heater at different air mass ratios,” Sustain. Energy Technol. Assessments, vol. 43, no. November 2020, pp. 100936, 2021. DOI: 10.1016/j.seta.2020.100936.
  • M. M. Matheswaran, T. V. Arjunan, and D. Somasundaram, “Analytical investigation of solar air heater with jet impingement using energy and exergy analysis,” Sol. Energy, vol. 161, no. October 2017, pp. 25–37, 2018. DOI: 10.1016/j.solener.2017.12.036.
  • M. K. Sahu and R. K. Prasad, “Thermohydraulic performance analysis of an arc shape wire roughened solar air heater,” Renew. Energy, vol. 108, pp. 598–614, 2017. DOI:10.1016/j.renene.2017.02.075.
  • S. Sharma, R. K. Das, and K. Kulkarni , “Experimental analysis and thermal management of solar air heater roughened with sine wave baffles,” Proc. Inst. Mech. Eng. Part A J. Power Energy, pp. 09576509221092906, 2022. DOI: 10.1177/09576509221092906.
  • J. E. Hill, “Proposed Method of Testing for Rating Solar Collectors Based on Thermal Performance,” Sol. Energy, 1975. pp. 341–348.
  • A. Cortés and R. Piacentini, “Improvement of the efficiency of a bare solar collector by means of turbulence promoters,” Appl. Energy, vol. 36, no. 4, pp. 253–261, 1990. DOI: 10.1016/0306-2619(90)90001-T.
  • M. K. Sahu, M. Kharub, and M. M. Matheswaran, “Nusselt number and friction factor correlation development for arc-shape apex upstream artificial roughness in solar air heater,” Environ. Sci. Pollut. Res, 2022. DOI: 10.1007/s11356-022-20222-0.
  • I. Heat and O. T. Factor, “Heat Transfer in Automobile Radiators,” vol. 12, pp. 3–22, 1985.
  • A. Bekele, M. Mishra, and S. Dutta, “Effects of delta-shaped obstacles on the thermal performance of solar air heater,” Adv. Mech. Eng, vol. 3, pp. 103502, 2011. DOI:10.1155/2011/103502.
  • N. Minh, P. Ba, and N. Van Hap, “Effective efficiency assessment of a solar air heater having baffles spaced with different successive ratios,” Case Stud. Therm. Eng, vol. 28, no. September, pp. 101486, 2021. DOI: 10.1016/j.csite.2021.101486.
  • N. T. Luan, N. M. Phu, N. Thanh, and N. Minh, “Thermohydraulic correlations and exergy analysis of a solar air heater duct with inclined baffles,” Case Stud. Therm. Eng, vol. 21, no. May, pp. 100672, 2020. DOI: 10.1016/j.csite.2020.100672.
  • K. Mohammadi and M. Sabzpooshani, “Comprehensive performance evaluation and parametric studies of single pass solar air heater with fins and baffles attached over the absorber plate,” Energy, vol. 57, pp. 741–750, 2013. DOI:10.1016/j.energy.2013.05.016.
  • B. K. Maheshwari, R. Karwa, and S. K. Gharai, “Performance Study of Solar Air Heater Having Absorber Plate with Half-Perforated Baffles,” Int. Sch. Res. Notices, vol. 2011, 2011. DOI:10.5402/2011/634025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.