Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Latest Articles
43
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of triangular cross-sectional transverse wedge on the performance of an inline tube bundle heat exchanger

&
Received 21 Sep 2022, Accepted 16 Jan 2023, Published online: 27 Jan 2023

References

  • T. R. B. T. Reg Bott, G. F. Hewitt, and G. L. Shires. Process. Heat. Transf. Boca Raton, FL.: CRC, 1994.
  • J. Zhang, J. Liu, L. Zhang, Q. Liu, and Q. Wu, “Air-side heat transfer characteristics under wet conditions at lower ambient pressure of fin-and-tube heat exchanger,” Int. J. Heat Mass Transf, vol. 142, pp. 118439, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118439.
  • X. Wu, et al., “Experimental study on the effects of fin pitches and tube diameters on the heat transfer and fluid flow characteristics of a fin punched with curved delta-winglet vortex generators,” Appl. Therm. Eng, vol. 119, pp. 560–572, 2017. DOI: 10.1016/j.applthermaleng.2017.03.072.
  • Z. Chen, M. Cheng, Q. Liao, Y. Ding, and J. Zhang, “Experimental investigation on the air-side flow and heat transfer characteristics of 3-D finned tube bundle,” Int. J. Heat Mass Transf, vol. 131, pp. 506–516, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.026.
  • A. Arora, P. M. V. Subbarao, and R. S. Agarwal, “Numerical optimization of location of ‘common flow up’ delta winglets for inline aligned finned tube heat exchanger,” Appl. Therm. Eng, vol. 82, pp. 329–340, 2015. DOI: 10.1016/j.applthermaleng.2015.02.071.
  • H. M. Ali and M. Abubaker, “Effect of circumferential pin thickness on condensate retention as a function of vapor velocity on horizontal pin-fin tubes,” Appl. Therm. Eng, vol. 91, pp. 245–251, 2015. DOI: 10.1016/j.applthermaleng.2015.08.025.
  • J. Dong, L. Su, Q. Chen, and W. Xu, “Experimental study on thermal–hydraulic performance of a wavy fin-and-flat tube aluminum heat exchanger,” Appl. Therm. Eng, vol. 51, no. 1–2, pp.32–39, 2013. DOI: 10.1016/j.applthermaleng.2012.09.018.
  • H. -Y. Li, C. -L. Chen, S. -M. Chao, and G. -F. Liang, “Enhancing heat transfer in a plate-fin heat sink using delta winglet vortex generators,” Int. J. Heat Mass Transf, vol. 67, pp. 666–677, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.08.042.
  • L. Pu, S. Zhang, L. Xu, and Y. Li, “Thermal performance optimization and evaluation of a radial finned shell-and-tube latent heat thermal energy storage unit,” Appl. Therm. Eng, vol. 166, pp. 114753, 2020. DOI: 10.1016/j.applthermaleng.2019.114753.
  • A. Nuntaphan, T. Kiatsiriroat, and C. C. Wang, “Heat transfer and friction characteristics of crimped spiral finned heat exchangers with dehumidification,” Appl. Therm. Eng., vol. 25, no. 2–3, pp.327–340, 2005. DOI: 10.1016/j.applthermaleng.2004.05.014.
  • W. -X. Chu, W. -J. Sheu, C. -C. Hsu, and C. -C. Wang, “Airside performance of sinusoidal wavy fin-and-tube heat exchangers subject to large-diameter tubes with round or oval configuration,” Appl. Therm. Eng, vol. 164, pp. 114469, 2020. DOI: 10.1016/j.applthermaleng.2019.114469.
  • M. -Y. Wen and C. -Y. Ho, “Heat-transfer enhancement in fin-and-tube heat exchanger with improved fin design,” Appl. Therm. Eng, vol. 29, no. 5–6, pp.1050–1057, 2009. DOI: 10.1016/j.applthermaleng.2008.05.019.
  • L. Fu, P. Liu, and G. Li, “Numerical investigation on ash fouling characteristics of flue gas heat exchanger,” Appl. Therm. Eng, vol. 123, pp. 891–900, 2017. DOI: 10.1016/j.applthermaleng.2017.05.184.
  • M. -J. Li, S. -Z. Tang, F. Wang, Q. -X. Zhao, and W. -Q. Tao, “Gas-side fouling, erosion and corrosion of heat exchangers for middle/low temperature waste heat utilization: a review on simulation and experiment,” Appl. Therm. Eng, vol. 126, pp. 737–761, 2017. DOI: 10.1016/j.applthermaleng.2017.07.095.
  • J. Li, W. Du, and L. Cheng, “Numerical simulation and experiment of gas-solid two phase flow and ash deposition on a novel heat transfer surface,” Appl. Therm. Eng, vol. 113, pp. 1033–1046, 2017. DOI: 10.1016/j.applthermaleng.2016.10.198.
  • M. S. Abd-Elhady, S. Abd-Elhady, C. C. M. Rindt, and A. A. Steenhoven, “Removal of gas-side particulate fouling layers by foreign particles as a function of flow direction,” Appl. Therm. Eng, vol. 29, no. 11–12, pp.2335–2343, 2009. DOI: 10.1016/j.applthermaleng.2008.11.020.
  • M. S. Abd-Elhady and M. R. Malayeri, “Asymptotic characteristics of particulate deposit formation in exhaust gas recirculation (EGR) coolers,” Appl. Therm. Eng, vol. 60, no. 1–2, pp.96–104, 2013. DOI: 10.1016/j.applthermaleng.2013.06.038.
  • D. Bouris, E. Konstantinidis, S. Balabani, D. Castiglia, and G. Bergeles, “Design of a novel, intensified heat exchanger for reduced fouling rates,” Int. J. Heat Mass Transf, vol. 48, no. 18, pp.3817–3832, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.03.026.
  • S. S. Paul, M. F. Tachie, and S. J. Ormiston, “Experimental study of turbulent cross-flow in a staggered tube bundle using particle image velocimetry,” Int. J. Heat Fluid Flow, vol. 28, no. 3, pp.441–453, 2007. DOI: 10.1016/j.ijheatfluidflow.2006.06.001.
  • S. G. Mavridou and D. G. Bouris, “Numerical evaluation of a heat exchanger with inline tubes of different size for reduced fouling rates,” Int. J .Heat Mass Transf, vol. 55, no. 19–20, pp.5185–5195, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.05.020.
  • Y. G. Park, et al., “A study on the optimal arrangement of tube bundle for the performance enhancement of a steam turbine surface condenser,” Appl. Therm. Eng, vol. 166, pp. 114681, 2020. DOI: 10.1016/j.applthermaleng.2019.114681.
  • B. L. da Silva, R. D. Luciano, J. Utzig, and H. F. Meier, “Analysis of flow behavior and fluid forces in large cylinder bundles by numerical simulations,” Int. J. Heat Fluid Flow, vol. 75, pp. 209–226, 2019. DOI: 10.1016/j.ijheatfluidflow.2019.01.006.
  • K. Lam, Y. F. Lin, L. Zou, and Y. Liu, “Experimental study and large eddy simulation of turbulent flow around tube bundles composed of wavy and circular cylinders,” Int. J. Heat Fluid Flow, vol. 31, no. 1, pp.32–44, 2010. DOI: 10.1016/j.ijheatfluidflow.2009.10.006.
  • D. K. Harris and V. W. Goldschmidt, “Measurements of the overall heat transfer from combustion gases confined within elliptical tube heat exchangers,” Exp. Therm. Fluid Sci, vol. 26, no. 1, pp.33–37, 2002. DOI: 10.1016/S0894-1777(02)00105-X.
  • R. P. Bharti, P. Sivakumar, and R. P. Chhabra, “Forced convection heat transfer from an elliptical cylinder to power-law fluids,” Int. J. Heat Mass Transf, vol. 51, no. 7–8, pp.1838–1853, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.06.032.
  • J. H. Myong, B. N. Choi, M. G. Go, and N. H. Kim, “Experimental investigation on the airside heat transfer and pressure drop of the fin-and-tube heat exchangers having oval tubes,” Exp. Heat. Transf, vol. 35, no. 4, pp.484–499, 2022. DOI: 10.1080/08916152.2021.1906357.
  • M. Akbaria, A. M. Lavasania, and A. Naserib, “Experimental investigation of the heat transfer for non-circular tubes in a turbulent air cross flow,” Exp.Heat. Transf, vol. 34, no. 6, pp.513–530, 2021. DOI: 10.1080/08916152.2020.1792586.
  • V. H. Morcos, “Performance of shell-and-dimpled-tube heat exchangers for waste heat recovery,” Heat Recover Syst. CHP, vol. 8, no. 4, pp.299–308, 1988. DOI: 10.1016/0890-4332(88)90023-3.
  • Y. Effendi, A. Prayogo, Syaiful, M. Djaeni, and E. Yohana, “Effect of perforated concave delta winglet vortex generators on heat transfer and flow resistance through the heated tubes in the channel,” Exp. Heat. Transf, vol. 35, no. 5, pp.553–576, 2022. DOI: 10.1080/08916152.2021.1919245.
  • M. S. Abd-Elhady, et al., “Minimum gas speed in heat exchangers to avoid particulate fouling,” Int. J. Heat Mass Transf, vol. 47, no. 17–18, pp.3943–3955, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.03.024.
  • A. Chinsuwan and A. P. Yisunzam, “Effect of transverse triangular wedges on the behavior of the ash deposition and heat transfer of an inline tube bundle,” Int. J. Heat Mass Transf, vol. 172, pp. 121121, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121121.
  • P. Yisunzam and A. Chinsuwan, “Effect of transverse triangular cross-sectional wedges on the asymptotic fouling deposition behavior of the flow through an inline tube bundle,” Int. J. Heat Mass Transf, vol. 166, pp. 120739, 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120739.
  • ISO 5167, Measurement of Fluid Flow by Means of Orific Plates, Nozzles and Venturi Tubes Inserted in Circular Cross-Section Conduits Running Full. Geneva, 1991.
  • A. J. Wheeler and A. R. Gangij, Introduction to Engineering Experimentation, Pren-. tice Hall, New Jersey, 2010.
  • R. L. Webb and N.H. Kim, Principles of Enhanced Heat Transfer, 2nd ed., New York, NY: Taylor& Francis, 2005.
  • ANSYS Fluent Theory Guide. “ANSYS, Inc.” Pennsylvania, pp. 39–57, 2013.
  • M. George and A. Hawkins Jakob. Elements of Heat Transfer, 3rd ed., Texas: John Wiley & Sons, 1957.
  • D. P. D. Incropera and P. Frank. Introduction to Heat Transfer. New York, NY.: John Wiley & Sons, 1985.
  • M. N. Özışık. Heat Transfer: A Basic Approach. Singapore: McGraw-Hill, 1985.
  • T. Kim, “Effect of longitudinal pitch on convective heat transfer in crossflow over in-line tube banks,” Ann. Nucl. Energy, vol. 57, pp. 209–215, 2013. DOI: 10.1016/j.anucene.2013.01.060.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.