Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Latest Articles
319
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental studies of a static flow immersion cooling system for fast-charging Li-ion batteries

ORCID Icon, &
Received 02 Dec 2022, Accepted 24 Apr 2023, Published online: 03 May 2023

References

  • Y. Chen, et al., “A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards,” J. Energy Chem., vol. 59, pp. 83–99, 2021. DOI: 10.1016/j.jechem.2020.10.017.
  • A. K. Thakur, et al., “A state-of-the art review on advancing battery thermal management systems for fast-charging,” Appl. Therm. Eng., vol. 226, pp. 120303, 2023. DOI: 10.1016/j.applthermaleng.2023.120303.
  • H. Behi, et al., “Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications,” Energy, vol. 224, pp. 120165, 2021. DOI: 10.1016/j.energy.2021.120165.
  • T. Zhang, et al., “Status and development of electric vehicle integrated thermal management from BTM to HVAC,” Appl. Therm. Eng., vol. 88, pp. 398–409, 2015. DOI: 10.1016/j.applthermaleng.2015.02.001.
  • S. Singh Katoch and M. Eswaramoorthy, “A detailed review on electric vehicles battery thermal management system,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 912, no. 4, pp.042005, 2020. DOI: 10.1088/1757-899X/912/4/042005.
  • S. Panchal, S. Mathewson, R. Fraser, R. Culham, and M. Fowler, “Experimental measurements of thermal characteristics of LiFePO4 battery, SAE Technical Paper 2015-01-1189, 2015.
  • T. Ghazi, et al., “Synergistic effect of active-passive methods using fins surface roughness and fluid flow for improving cooling performance of heat sink heat pipes,” Exp. Heat Transfer, pp. 1–16, 2023. DOI: 10.1080/08916152.2023.2182838.
  • Y. Fan, et al., “Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries,” Appl. Therm. Eng., vol. 155, pp. 96–109, 2019. DOI: 10.1016/j.applthermaleng.2019.03.157.
  • T. Wang, K. J. Tseng, J. Zhao, and Z. Wei, “Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies,” Appl. Energy, vol. 134, pp. 229–238, 2014. DOI: 10.1016/j.apenergy.2014.08.013.
  • K. Chen, M. Song, W. Wei, and S. Wang, “Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement,” Int. J. Heat Mass Transf, vol. 132, pp. 309–321, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.024.
  • W. Liu, et al., “Natural convection heat transfer at reduced pressures,” Exp. Heat Transfer, vol. 32, no. 1, pp.14–24, 2019. DOI: 10.1080/08916152.2018.1468833.
  • H. Najafi Khaboshan, F. Jaliliantabar, A. A. Abdullah, and S. Panchal, “Improving the Cooling performance of cylindrical Lithium-ion battery using three passive methods in a battery thermal management system,” Available at SSRN 4276692, 2022. DOI: 10.2139/ssrn.4276692.
  • K.H. Chen, T. Han, B. Khalighi, and P. Klaus, “Air cooling concepts for Li-ion battery pack in cell level”, Proceedings of the ASME 2017 Heat Transfer Summer Conference. Volume 1: Aerospace Heat Transfer; Computational Heat Transfer; Education; Environmental Heat Transfer; Fire and Combustion Systems; Gas Turbine Heat Transfer; Heat Transfer in Electronic Equipment; Heat Transfer in Energy Systems. Bellevue, Washington, USA. July 9–12, 2017.
  • M. Bulut, M. Shukla, S. G. Kandlikar, and N. Sozbir, “Experimental study of heat transfer in a microchannel with pin fins and sintered coatings,” Exp. Heat Transfer, pp. 1–16, 2023. DOI: 10.1080/08916152.2023.2176566.
  • Y. Ye, L. H. Saw, Y. Shi, and A. A. O. Tay, “Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging,” Appl. Therm. Eng., vol. 86, pp. 281–291, 2015. DOI: 10.1016/j.applthermaleng.2015.04.066.
  • G. Zhao, X. Wang, M. Negnevitsky, and H. Zhang, “A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles,” J. Power Sources, vol. 501, pp. 230001, 2021. DOI: 10.1016/j.jpowsour.2021.230001.
  • V. Choudhari, A. S. Dhoble, and S. Panchal, “Experimental and numerical investigation on thermal characteristics of 2×3 designed battery module,” Available at SSRN, https://ssrn.com/abstract=4220937
  • D. F. Bubbico Roberto, M. Barbara, and M. Carla, “Air cooling of Li-ion batteries: an experimental analysis,” Chem. Eng. Trans., vol. 57, pp. 379–384, 2017.
  • X. Peng, X. Cui, X. Liao, and A. Garg, “A thermal investigation and optimization of an air-cooled Lithium-ion battery pack,” Energies, vol. 13, no. 11, pp.2956, 2020. DOI: 10.3390/en13112956.
  • L. Zhang, Q. Chen, and T. Wang, “Effects of air cooling structure on cooling performance enhancement of prismatic lithium-ion battery packs based on coupled electrochemical-thermal model,” Energy Sci. Eng., vol. 9, no. 9, pp.1450–1464, 2021. DOI: 10.1002/ese3.905.
  • Y. Fan, et al., “Surrogate model-based multiobjective design optimization for air-cooled battery thermal management systems,” Eng. Appl. Comput. Fluid Mech., vol. 16, no. 1, pp.1031–1047, 2022. DOI: 10.1080/19942060.2022.2066180.
  • M. Akbarzadeh, et al., “A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module,” Appl. Therm. Eng., vol. 198, pp. 117503, 2021. DOI: 10.1016/j.applthermaleng.2021.117503.
  • Y. Wang, L. Luo, Z. Hou, and L. Ruan, “Experimental research and simulation of water flow in liquid cooled rotor”, International Conference on Electrical Machines and Systems (ICEMS), 31 October 2021- 3 November 2021, Gyeongju, Korea, pp. 1435–1439, 2021.
  • M. Akbarzadeh, et al., “Experimental and numerical thermal analysis of a lithium-ion battery module based on a novel liquid cooling plate embedded with phase change material,” J. Energy Storage, vol. 50, pp. 104673, 2022. DOI: 10.1016/j.est.2022.104673.
  • S. Wu, et al., “Effect analysis on integration efficiency and safety performance of a battery thermal management system based on direct contact liquid cooling,” Appl. Therm. Eng., vol. 201, pp. 117788, 2022. DOI: 10.1016/j.applthermaleng.2021.117788.
  • Z. Qian, Y. Li, and Z. Rao, “Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling,” Energy Convers. Manage., vol. 126, pp. 622–631, 2016. DOI: 10.1016/j.enconman.2016.08.063.
  • L. Dhruw, H. B. Kothadia, and R. Arun Kumar, “Experimental analysis of local and average heat transfer between circular impinging jet and flat plate,” Exp. Heat Transfer, vol. 36, no. 1, pp.1–25, 2023. DOI: 10.1080/08916152.2022.2099036.
  • H. Liu, Z. Wei, W. He, and J. Zhao, “Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review,” Energy Convers. Manage., vol. 150, pp. 304–330, 2017. DOI: 10.1016/j.enconman.2017.08.016.
  • A. Jarrett and I. Yong Kim, “Design optimization of electric vehicle battery cooling plates for thermal performance,” J. Power Sources, vol. 196, no. 23, pp.10359–10368, 2017. DOI: 10.1016/j.jpowsour.2011.06.090.
  • O. Kalkan, A. Celen, K. Bakirci, and A. Selim Dalkilic, “Experimental investigation of thermal performance of novel cold plate design used in a Li-ion pouch-type battery,” Appl. Therm. Eng., vol. 191, pp. 116885, 2021. DOI: 10.1016/j.applthermaleng.2021.116885.
  • N. Wu, X. Li, N. Ouyang, and W. Zhang, “Minichannel liquid cooling system for large-sized lithium-ion battery packs by integrating step-allocated coolant scheme,” Appl. Therm. Eng., vol. 214, pp. 118798, 2022. DOI: 10.1016/j.applthermaleng.2022.118798.
  • N. Mei, X. Xu, and R. Li, “Heat dissipation analysis on the liquid cooling system coupled with a flat heat pipe of a Lithium-ion battery,” ACS. Omega, vol. 5, no. 28, pp.17431–17441, 2020. DOI: 10.1021/acsomega.0c01858.
  • Y. Qin, et al., “External liquid cooling method for Lithium-ion battery modules under ultra-fast charging”, International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, pp. 1169–1174, 2021.
  • A. A. O. T. Lip Huat Saw and L. Winston Zhang, “Thermal management of lithium-ion battery pack with liquid cooling.” , pp. 298–302, 2015.
  • C. Piao, T. Chen, A. Zhou, and P. Wang, “Research on electric vehicle cooling system based on active and passive liquid cooling,” J. Phys. Conf. Ser, vol. 1549, no. 4, pp.042146, 2020. DOI: 10.1088/1742-6596/1549/4/042146.
  • C. Akkaldevi, et al., “Coupled electrochemical-thermal simulations and validation of minichannel cold-plate water-cooled prismatic 20 Ah LiFePO4 battery,” Electrochem., vol. 2, no. 4, pp.643–663, 2021. DOI: 10.3390/electrochem2040040.
  • C. Roe, et al., “Immersion cooling for lithium-ion batteries – a review,” J. Power Sources, vol. 525, pp. 231094, 2022. DOI: 10.1016/j.jpowsour.2022.231094.
  • T. Amalesh and N. Lakshmi Narasimhan, “Cooling of a lithium ion battery using phase change material with air/dielectric fluid media: a numerical study,” Proc. Inst. Mech. Eng. J. Power Energy, vol. 234, no. 5, pp.722–738, 2019. DOI: 10.1177/0957650919859109.
  • S. M. Sohel Murshed and C. A. Nieto de Castro, “A critical review of traditional and emerging techniques and fluids for electronics cooling,” Renewable Sustainable Energy Rev., vol. 78, pp. 821–833, 2017. DOI: 10.1016/j.rser.2017.04.112.
  • J. M. Shah, R. Eiland, A. Siddarth, and D. Agonafer, “Effects of mineral oil immersion cooling on IT equipment reliability and reliability enhancements to data center operations”, IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA, pp. 316–325, 2016.
  • P. Birbarah, et al., “Water immersion cooling of high power density electronics,” Int. J. Heat Mass Transf, vol. 147, pp. 118918, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118918.
  • N. Agung Pambudi, et al., “The immersion cooling technology: current and future development in energy saving,” Alexandria Eng. J., vol. 61, no. 12, pp.9509–9527, 2022. DOI: 10.1016/j.aej.2022.02.059.
  • M. Larrañaga-Ezeiza, G. Vertiz, P. F. Fernandez Arroiabe, M. Manex Martinez Agirre, and J. Berasategi, “A novel direct liquid cooling strategy for electric vehicles focused on pouch type battery cells,” Appl. Therm. Eng., vol. 216, pp. 118869, 2022. DOI: 10.1016/j.applthermaleng.2022.118869.
  • A. Trimbake, C. P. Singh, and S. Krishnan, “Mineral oil immersion cooling of Lithium-ion batteries: an experimental investigation,” ASME J. Electrochem. Energy Convers. Storage, vol. 19, no. 2, pp.021007, 2022. DOI: 10.1115/1.4052094.
  • L. Yang, et al., “Effective heat dissipation for prismatic Lithium-ion battery by fluorinated liquid immersion cooling approach,” Int. J. Green Energy, 2023.
  • M. Suresh Patil, J. -H. Seo, and M. -Y. Lee, “A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management,” Energy Convers. Manage., vol. 229, pp. 113715, 2021. DOI: 10.1016/j.enconman.2020.113715.
  • D. M. Mehta, P. Kundu, A. Chowdhury, V. K. Lakhiani, and A. S. Jhala, “A review of critical evaluation of natural ester vis-a-vis mineral oil insulating liquid for use in transformers: part II,” IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 3, pp.1705–1712, 2016. DOI: 10.1109/TDEI.2016.005371.
  • H. Duzkaya and A. Beroual, “Statistical analysis of AC dielectric strength of natural ester-based ZnO nanofluids,” Energies, vol. 14, no. 1, pp.99, 2021. DOI: 10.3390/en14010099.
  • S. A. Khan, M. Tariq, A. A. Ali Khan, S. Urooj, and L. Mihet Popa, “An experimental study and statistical analysis on the electrical properties of synthetic ester-based nanofluids,” Energies, vol. 15, no. 23, pp.9127, 2022. DOI: 10.3390/en15239127.
  • M. Lashbrook, H. Al-Amin, and R. Martin, “Natural ester and synthetic ester fluids, applications and maintenance,” Jordan International Electrical and Electronics Engineering Conference (JIEEEC), Amman, Jordan, 2017.
  • A. Ortiz, F. Delgado, F. Ortiz, I. Fernández, and A. Santisteban, “The aging impact on the cooling capacity of a natural ester used in power transformers,” Appl. Therm. Eng., vol. 144, pp. 797–803, 2018. DOI: 10.1016/j.applthermaleng.2018.08.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.