Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Latest Articles
91
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An experimental investigation on the performance of designed closed reactor system on the thermochemical heat storage of magnesium chloride hexahydrate

, &
Received 03 Jun 2022, Accepted 20 Jul 2023, Published online: 29 Jul 2023

References

  • M. G. Gado, S. Ookawara, S. Nada, and H. Hassan, “Renewable energy-based cascade adsorption-compression refrigeration system: Energy, exergy, exergoeconomic and enviroeconomic perspectives,” Energy, vol. 253, pp. 124127, 2022. DOI: 10.1016/j.energy.2022.124127.
  • R. Yin, P. Xu, and P. Shen. “Case study: Energy savings from solar window film in two commercial buildings in Shanghai.” Energy Build, vol. 45, pp. 132–140, 2012. DOI: 10.1016/j.enbuild.2011.10.062.
  • R. Elghamry, and H. Hassan. “Impact of window parameters on the building envelope on the thermal comfort, energy consumption and cost and environment.” Mediterranean Energy Regulators, vol. 19, no. 4, pp. 233–259, 2020. DOI:10.1080/14733315.2019.1665784.
  • R. Parameshwaran, S. Kalaiselvam, S. Harikrishnan, and A. Elayaperumal. “Sustainable thermal energy storage technologies for buildings: A review.” Renew. Sustain. Energy. Rev, vol. 16, pp. 2394–2433, 2012. DOI:10.1016/j.rser.2012.01.058.
  • R. Elghamry, H. Hassan, and A. A. Hawwash, “A parametric study on the impact of integrating solar cell panel at building envelope on its power, energy consumption, comfort conditions, and CO2 emissions,” J. Clean. Prod., vol. 249, pp. 119374, 2019. DOI: 10.1016/J.JCLEPRO.2019.119374.
  • A. A. Hawwash, A. K. Abdel Rahman, S. A. Nada, and S. Ookawara, “Numerical investigation and experimental verification of performance enhancement of flat plate solar collector using nanofluids,” Appl. Therm. Eng., vol. 130, pp. 363–374, 2018. DOI: 10.1016/j.applthermaleng.2017.11.027.
  • S. A. Nada, A. A. Hawwash, A. K. Abdel-Rahman, and S. Ookawara. “Experimental study of alumina nanofluids effects on thermal performance efficiency of flat plate solar collectors.” Int. J. Eng. Technol., vol. 4, pp. 123–131, 2016. DOI:10.5176/2251-189X.
  • H. Hassan, M. S. Yousef, and S. Abo-Elfadl, “Energy, exergy, economic and environmental assessment of double pass V-corrugated-perforated finned solar air heater at different air mass ratios,” Sustainable Energy Technol. Assess., vol. 43, pp. 100936, 2021. DOI: 10.1016/j.seta.2020.100936.
  • C. Suresh and R. P. Saini, “Performance comparison of sensible and latent heat-based thermal storage system during discharging–an experimental study,” Exp. Heat Transfer, vol. 35, pp. 45–61, 2022. DOI: 10.1080/08916152.2020.1817178.
  • P. Pinel, C. A. Cruickshank, I. Beausoleil-Morrison, and A. Wills, “A review of available methods for seasonal storage of solar thermal energy in residential applications,” Renew. Sust. Energ. Rev., vol. 15, pp. 3341–3359, 2011. DOI: 10.1016/j.rser.2011.04.013.
  • C. W. Chan and A. P. Roskilly, “A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation,” Appl. Therm. Eng., vol. 50, no. 1, pp.1257–1273, 2013. DOI: 10.1016/j.applthermaleng.2012.06.041.
  • D. Lefebvre and F. H. Tezel. “A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications.” Renew. Sust. Energ. Rev., vol. 67, pp. 116–125, 2017. DOI: 10.1016/j.rser.2016.08.019.
  • P. Tatsidjodoung, N. Le Pierrès, and L. Luo. “A review of potential materials for thermal energy storage in building applications.” Renew. Sust. Energ. Rev., vol. 18, pp. 327–349, 2013. DOI: 10.1016/j.rser.2012.10.025.
  • P. A. J. Donkers, L. C. Sögütoglu, H. P. Huinink, H. R. Fischer, and O. C. G. Adan, “A review of salt hydrates for seasonal heat storage in domestic applications,” Appl. Energy, vol. 199, pp. 45–68, 2017. DOI: 10.1016/j.apenergy.2017.04.080.
  • P. Pardo et al., “A review on high temperature thermochemical heat energy storage,” Renew. Sust. Energ. Rev., vol. 32, pp. 591–610, 2014. DOI: 10.1016/j.rser.2013.12.014.
  • K. E. N’tsoukpoe, H. Liu, L. Luo, and L. Luo, “A review on long-term sorption solar energy storage,” Renew. Sust. Energ. Rev., vol. 13, no. 9, pp.2385–2396, 2009. DOI: 10.1016/j.rser.2009.05.008.
  • T. Khadiran, M. Zobir, Z. Zainal, and R. Rusli, “Advanced energy storage materials for building applications and their thermal performance characterization: A review,” Renew. Sust. Energ. Rev., vol. 57, pp. 916–928, 2016. DOI: 10.1016/j.rser.2015.12.081.
  • F. M. Rad and A. S. Fung. “Solar community heating and cooling system with borehole thermal energy storage – Review of systems.” Renew. Sust. Energ. Rev., vol. 60, pp. 1550–1561, 2016. DOI: 10.1016/j.rser.2016.03.025.
  • C. Yadav and R. R. Sahoo, “Effect of nano-enhanced PCM on the thermal performance of a designed cylindrical thermal energy storage system,” Exp. Heat Transfer, vol. 34, pp. 356–375, 2021. DOI: 10.1080/08916152.2020.1751744.
  • F. Mohamed and P. C. Eames. “Thermal performance evaluation of a latent heat thermal energy storage unit with an embedded multi-tube finned copper heat exchanger.” Exp. Heat Transfer, pp. 1–20, 2021. DOI: 10.1080/08916152.2021.1984342.
  • A. T. Muzhanje, M. A. Hassan, S. Ookawara, and H. Hassan, “An overview of the preparation and characteristics of phase change materials with nanomaterials,” J. Energy Storage, vol. 51, pp. 104353, 2022. DOI: 10.1016/j.est.2022.104353.
  • A. M. Elshaer, A. M. A. Soliman, M. Kassab, and A. A. Hawwash, “The effect of melting point and combination of phase change materials on the thermal control performance of small satellites in the thermal environment of low earth orbit.” Numerical Study, J. Energy Storage, vol. 59, 2023. DOI: 10.1016/j.est.2022.106531.
  • L. C. Sögütoglu, P. A. J. Donkers, H. R. Fischer, H. P. Huinink, and O. C. G. Adan, “In-depth investigation of thermochemical performance in a heat battery: Cyclic analysis of K 2 CO 3, MgCl 2 and Na,” Appl. Energ., vol. 2 S, no. 215, pp.159–173, 2018. DOI: 10.1016/j.apenergy.2018.01.083.
  • B. Michel, N. Mazet, S. Mauran, D. Stitou, and J. Xu, “Thermochemical process for seasonal storage of solar energy: Characterization and modeling of a high density reactive bed,” Energy, vol. 47, pp. 553–563, 2012. DOI: 10.1016/j.energy.2012.09.029.
  • M. B. Elsheniti and O. A. Elsamni . “Numerical simulation for a thermochemical energy storage reactor.“ Role of Engineering Towards A Better Environment RETBE'17, Alexandria, Egypt, 2017. http://retbe.alexeng.edu.eg
  • N. Yu, R. Z. Wang, and L. W. Wang, “Sorption thermal storage for solar energy,” Prog. Energy Combust. Sci., vol. 39, no. 5, pp.489–514, 2013. DOI: 10.1016/j.pecs.2013.05.004.
  • B. Xue, et al., “Numerical simulation for steam generation process in a novel zeolite–water adsorption heat pump,” J. Chem. Eng. Jpn., vol. 45, no. 6, pp.408–416, 2012. DOI: 10.1252/jcej.12we016.
  • F. Rahmawati, et al., “Carbon from bagasse activated with water vapor and its adsorption performance for methylene blue,” Appl. Sci. (Switzerland), vol. 11, no. 2, pp.1–16, 2021. DOI: 10.3390/app11020678.
  • F. M. Chairunnisa, et al. “Enhancing water adsorption capacity of acorn nutshell based activated carbon for adsorption thermal energy storage application.” Energy Rep., vol. 6, pp. 255–263, 2020. DOI: 10.1016/j.egyr.2020.11.038.
  • J. Fukai and A. T. Wijayanta, Potential ability of zeolite to generate high-temperature vapor using waste heat, AIP Conf Proc. vol. 1931, 2018. DOI: 10.1063/1.5024055.
  • D. Aydin, S. P. Casey, and S. Riffat. “The latest advancements on thermochemical heat storage systems.” Renew. Sust. Energ. Rev., vol. 41, pp. 356–367, 2015. DOI: 10.1016/j.rser.2014.08.054.
  • Y. Yoshizawa, “KINETIC STUDY of the HYDRATION of MAGNESIUM OXIDE for a CHEMICAL HEAT PUMP Yukitaka Kato,* t Norimichi Yamashita,: ~ Kei Kobayashi: ~ and,” Appl. Therm. Eng., vol. 16, no. 11, pp.853–862, 1996. DOI: 10.1016/1359-4311(96)00009-9.
  • F. Schaube, L. Koch, A. Wörner, and H. Müller-Steinhagen. “A thermodynamic and kinetic study of the de- and rehydration of Ca(OH)2 at high H2O partial pressures for thermo-chemical heat storage.” Thermochim. Acta, vol. 538, pp. 9–20, 2012. DOI:10.1016/j.tca.2012.03.003.
  • Y. Kato, T. O-Shima, and Y. Yoshizawa, “Thermal performance of a packed bed reactor for a high-temperature chemical heat pump,” Int. J. Energy Res, vol. 25, pp. 577–589, 2001. DOI: 10.1002/er.704.
  • S. Tescari, et al., “Thermochemical solar energy storage via redox oxides: Materials and reactor/heat exchanger concepts,” Energy. Proced., vol. 49, pp. 1034–1043, 2013. DOI: 10.1016/j.egypro.2014.03.111.
  • G. Balasubramanian, et al., “Modeling of thermochemical energy storage by salt hydrates,” Int. J. Heat Mass. Transf, vol. 53, no. 25–26, pp.5700–5706, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.08.012.
  • J. Lu, Y. Chen, J. Ding, and W. Wang. “High temperature energy storage performances of methane reforming with carbon dioxide in tubular packed reactor.” Energy. Proced., vol. 61, pp. 407–410, 2014. DOI:10.1016/j.egypro.2014.11.1136.
  • A. E. Kalyva, et al., “Hybrid photo-thermal sulfur-ammonia water splitting cycle: Thermodynamic analysis of the thermochemical steps,” Int. J. Hydrog Energy, vol. 42, pp. 9533–9544, 2017. DOI: 10.1016/j.ijhydene.2017.01.104.
  • W. Lipiński, E. Guillot, G. Olalde, and A. Steinfeld, “Transmittance enhancement of packed-bed particulate media,” Exp. Heat Transfer, vol. 21, pp. 73–82, 2008. DOI: 10.1080/08916150701647843.
  • A. A. Hawwash, H. Hassan, M. Ahmed, S. Ookawara, and K. El Feky. “Long-term thermal energy storage using thermochemical materials.” Energy. Proced., vol. 141, pp. 310–314, 2017. DOI:10.1016/j.egypro.2017.11.111.
  • A. A. Hawwash, H. Hassan, and K. El Feky. “Impact of reactor design on the thermal energy storage of thermochemical materials.” Appl. Therm. Eng., vol. 168, pp. 114776, 2020. DOI: 10.1016/j.applthermaleng.2019.114776.
  • R. K. Sharma, P. Ganesan, V. V. Tyagi, and T. M. I. Mahlia. “Solar energy materials & solar cells accelerated thermal cycle and chemical stability testing of polyethylene glycol (PEG) 6000 for solar thermal energy storage.” Sol. Energy Mater. Sol. Cells, vol. 147, pp. 235–239, 2016. DOI: 10.1016/j.solmat.2015.12.023.
  • A. Fopah-Lele, F. Kuznik, T. Osterland, and W. K. L. Ruck, “Thermal synthesis of a thermochemical heat storage with heat exchanger optimization,” Appl. Therm. Eng., vol. 101, pp. 669–677, 2016. DOI: 10.1016/j.applthermaleng.2015.12.103.
  • V. Mamani, A. Gutiérrez, and S. Ushak. “Development of low-cost inorganic salt hydrate as a thermochemical energy storage material.” Sol. Energy Mater. Sol. Cells, vol. 176, pp. 346–356, 2018. DOI: 10.1016/j.solmat.2017.10.021.
  • A. Rubino and R. de Boer, Seasonal storage of solar heat reactor modelling, The 10th IIR Gustav Lorentzen Conference on Natural Refrigerants, Netherlands, 2012, pp. 1–8.
  • A. Fopah Lele, F. Kuznik, O. Opel, and W. K. L. Ruck, “Performance analysis of a thermochemical based heat storage as an addition to cogeneration systems,” Energy Convers. Manag., vol. 106, pp. 1327–1344, 2015. DOI: 10.1016/j.enconman.2015.10.068.
  • A. Fopah Lele, F. Kuznik, H. U. Rammelberg, T. Schmidt, and W. K. L. Ruck, “Thermal decomposition kinetic of salt hydrates for heat storage systems,” Appl. Energy, vol. 154, pp. 447–458, 2015. DOI: 10.1016/j.apenergy.2015.02.011.
  • M. Richter, E. M. Habermann, E. Siebecke, and M. Linder. “A systematic screening of salt hydrates as materials for a thermochemical heat transformer.” Thermochim. Acta, vol. 659, pp. 136–150, 2018. DOI: 10.1016/j.tca.2017.06.011.
  • F. Marias, G. Tanguy, J. Wyttenbach, S. Rouge, and P. Papillon, “Thermochemical storage: first results of pilot storage with moist air, ises solar world congress - rapid transition to a renewable energy world.” 2011. pp. 1809–1820, DOI: 10.18086/swc.2011.29.17.
  • H. U. Rammelberg, T. Schmidt, and W. Ruck. “Hydration and dehydration of salt hydrates and hydroxides for thermal energy storage - Kinetics and energy release.” Energy. Proced., vol. 30, pp. 362–369, 2012. DOI: 10.1016/j.egypro.2012.11.043.
  • W. Chen, W. Li, and Y. Zhang. “Analysis of thermal deposition of MgCl2·6H2O hydrated salt in the sieve-plate reactor for heat storage.” Appl. Therm. Eng., vol. 135, pp. 95–108, 2018. DOI: 10.1016/j.applthermaleng.2018.02.043.
  • H. Zondag, “Comparison of reactor concepts for thermochemical storage of solar heat.“ Third International Renewable Energy Storage Conference, Berlin, Germany, 2008. http://www.ecn.nl/docs/library/report/2009/m09007.pdf
  • H. A Zondag, V. M. van Essen, L. P. J. Bleijendaal, B. W. J. Kikkert, and M. Bakker, Application of MgCl2· 6H2O for thermochemical seasonal solar heat storage, 5th IRES Conference, Berlin, Germany, 2010, pp. 22–24.
  • A. A. Hawwash, S. Mori, K. El Feky, and H. Hassan, “Numerical study for open reactor design using salt hydrate,” IOP Conf. Ser.: Earth Environ. Sci., vol. 322, pp. 3–10, 2019. DOI: 10.1088/1755-1315/322/1/012021.
  • A. F. Lele, et al., “Modelling of heat exchangers based on thermochemical material for solar heat storage systems,” Energy. Proced., vol. 61, pp. 2809–2813, 2014. DOI: 10.1016/j.egypro.2014.12.284.
  • C. N. Fopah-Lele, et al., “Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger,” Energy, vol. 114, pp. 225–238, 2016. DOI: 10.1016/j.energy.2016.08.009.
  • J. Taylor, An introduction to error analysis. University Science Books, 1997, pp. 13–24.
  • H. Hassan, “An experimental work on the effect of injection molding parameters on the cavity pressure and product weight,” Int. J. Adv. Manuf. Technol., vol. 67, pp. 675–686, 2013. DOI: 10.1007/s00170-012-4514-4.
  • A. M. A. Soliman, M. S. Yousef, S. Ookawara, and H. Hassan, “Experimental study of using system of flat heat pipe-phase change material inclusion heat sink for thermal regulation of simulated PV,” Exp. Heat Transfer, no. 5, pp. 648–664, 2022. DOI: 10.1080/08916152.2022.2071359.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.