Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Latest Articles
119
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigating the influence of flexible flags on heat transfer through experimental analysis

&
Received 16 Aug 2023, Accepted 27 Nov 2023, Published online: 06 Dec 2023

References

  • S. Caliskan, A. Dogan, and U. R. Sahin, “Effect of new punched vortex generators in a rectangular channel on heat transfer using Taguchi method,” Exp. Heat Transf., vol. 35, no. 5, pp. 611–636, 2021. DOI: 10.1080/08916152.2021.1926597.
  • F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine. Fundamentals of Heat and Mass Transfer. John Wiley & Sons. 2007. DOI: 10.1016/j.applthermaleng.2011.03.022.
  • G. M. Gilson, S. J. Pickering, D. B. Hann, and C. Gerada, “Piezoelectric fan cooling: a novel high reliability electric machine thermal management solution,” IEEE Trans. Ind. Electron, vol. 60, no. 11, pp. 4841–4851, 2013. DOI: 10.1109/TIE.2012.2224081.
  • S. Tiwari, P. L. N. Prasad, and G. Biswas, “A numerical study of heat transfer in fin?tube heat exchangers using winglet-type vortex generators in common-flow down configuration,” Prog. Comput. Fluid Dyn. An Int. J, vol. 3, no. 1, pp. 32, 2003. DOI: 10.1504/PCFD.2003.003765.
  • M. O. G. Varun, H. Nautiyal, S. Khurana, and M. K. Shukla, “Heat transfer augmentation using twisted tape inserts: a review.” Renew. Sustain. Energy. Rev., vol. 63, pp. 193–225, 2016. DOI:10.1016/j.rser.2016.04.051.
  • F. Herrault, P. A. Hidalgo, C.-H. Ji, A. Glezer, and M. G. Allen, Cooling performance of micromachined self-oscillating reed actuators in heat transfer channels with integrated diagnostics, in: 2012 IEEE 25th Int. Conf. Micro Electro Mech. Syst, IEEE, 2012: pp. 1217–1220. DOI: 10.1109/MEMSYS.2012.6170408.
  • P. Hidalgo and A. Glezer, Direct actuation of small-scale motions for enhanced heat transfer in heated channels, in: 2014 Semicond. Therm. Meas. Manag. Symp, IEEE, 2014: pp. 17–23. DOI: 10.1109/SEMI-THERM.2014.6892209.
  • P. Hidalgo and A. Glezer. Small-Scale Vorticity Induced by a Self-Oscillating Fluttering Reed for Heat Transfer Augmentation in Air Cooled Heat Sinks, In: Vol. 1 Therm. Manag. American Society of Mechanical Engineers. 2015. DOI: 10.1115/IPACK2015-48511.
  • K. Shoele and R. Mittal, “Computational study of flow-induced vibration of a reed in a channel and effect on convective heat transfer,” Phys. Fluids, vol. 26, no. 12, pp. 127103, 2014. DOI: 10.1063/1.4903793.
  • A. K. Soti, R. Bhardwaj, and J. Sheridan, “Flow-induced deformation of a flexible thin structure as manifestation of heat transfer enhancement.” Int. J. Heat Mass. Transf, vol. 84, pp. 1070–1081, 2015. DOI:10.1016/j.ijheatmasstransfer.2015.01.048.
  • K. Song, T. Tagawa, Z. Chen, and Q. Zhang, “Heat transfer characteristics of concave and convex curved vortex generators in the channel of plate heat exchanger under laminar flow.” Int. J. Therm. Sci., vol. 137, pp. 215–228, 2019. DOI:10.1016/j.ijthermalsci.2018.11.002.
  • A. Akcayoglu and C. Nazli, “A comprehensive numerical study on thermohydraulic performance of fluid flow in triangular ducts with delta-winglet vortex generators,” Heat Transf. Eng, vol. 39, no. 2, pp. 107–119, 2018. DOI: 10.1080/01457632.2017.1288046.
  • S. Ali, S. Menanteau, C. Habchi, T. Lemenand, and J.-L. Harion, “Heat transfer and mixing enhancement by using multiple freely oscillating flexible vortex generators.” Appl. Therm. Eng., vol. 105, pp. 276–289, 2016. DOI:10.1016/j.applthermaleng.2016.04.130.
  • S. Chamoli, “A Taguchi approach for optimization of flow and geometrical parameters in a rectangular channel roughened with V down perforated baffles.” Case Stud. Therm. Eng., vol. 5, pp. 59–69, 2015. DOI:10.1016/j.csite.2015.01.001.
  • S. Hussain, J. Liu, L. Wang, and B. Sundén, “Suppression of endwall heat transfer in the junction region with a symmetric airfoil by a vortex generator pair.” Int. J. Therm. Sci., vol. 136, pp. 135–147, 2019. DOI:10.1016/j.ijthermalsci.2018.10.019.
  • I. Kotcioglu, A. Cansiz, and M. Nasiri Khalaji, “Experimental investigation for optimization of design parameters in a rectangular duct with plate-fins heat exchanger by Taguchi method,” Appl. Therm. Eng., vol. 50, no. 1, pp. 604–613, 2013. DOI: 10.1016/j.applthermaleng.2012.05.036.
  • S. Bhattacharyya, A. I. Bashir, K. Dey, and R. Sarkar, “Effect of novel short-length wavy-tape turbulators on fluid flow and heat transfer: experimental study,” Exp. Heat Transf., vol. 33, no. 4, pp. 335–354, 2020. DOI: 10.1080/08916152.2019.1639847.
  • J. B. Lee, S. G. Park, B. Kim, J. Ryu, and H. J. Sung, “Heat transfer enhancement by flexible flags clamped vertically in a Poiseuille channel flow.” Int. J. Heat Mass. Transf, vol. 107, pp. 391–402, 2017. DOI:10.1016/j.ijheatmasstransfer.2016.11.057.
  • Y. Rao, C. Wan, Y. Xu, and S. Zang. “Spatially-resolved heat transfer characteristics in channels with pin fin and pin fin-dimple arrays.” Int. J. Therm. Sci., 2011. DOI: 10.1016/j.ijthermalsci.2011.06.013.
  • C. Luo, K. Song, T. Tagawa, X. Wu, and L. Wang, “Thermal performance of a zig-zag channel formed by two wavy fins mounted with vortex generators.” Int. J. Therm. Sci., vol. 153, pp. 106361, 2020. DOI:10.1016/j.ijthermalsci.2020.106361.
  • J. B. Lee, S. G. Park, and H. J. Sung, “Heat transfer enhancement by asymmetrically clamped flexible flags in a channel flow.” Int. J. Heat Mass. Transf, vol. 116, pp. 1003–1015, 2018. DOI:10.1016/j.ijheatmasstransfer.2017.09.094.
  • Y. Chen, J. Yang, Y. Liu, and H. J. Sung, “Heat transfer enhancement in a poiseuille channel flow by using multiple wall-mounted flexible flags.” Int. J. Heat Mass. Transf, vol. 163, pp. 120447, 2020. DOI:10.1016/j.ijheatmasstransfer.2020.120447.
  • S. Caliskan, A. D. Koseoglu, A. Dogan, and U. R. Sahin, “Experimental investigation of the effect of flexible/rigid flag on heat transfer.” Int. J. Therm. Sci., vol. 188, pp. 108147, 2023. DOI:10.1016/j.ijthermalsci.2023.108147.
  • Y. Effendi, A. Prayogo, M. D. Syaiful, and E. Yohana, “Effect of perforated concave delta winglet vortex generators on heat transfer and flow resistance through the heated tubes in the channel,” Exp. Heat Transf., vol. 35, no. 5, pp. 553–576, 2022. DOI: 10.1080/08916152.2021.1919245.
  • R. K. B. Gallegos and R. N. Sharma, “Heat transfer performance of flag vortex generators in rectangular channels.” Int. J. Therm. Sci., vol. 137, pp. 26–44, 2019. DOI:10.1016/j.ijthermalsci.2018.11.001.
  • A. S. Yadav, et al., “A numerical investigation of an artificially roughened solar air heater.” Energies, vol. 15, pp. 8045, 2022. DOI:10.3390/en15218045.
  • A. S. Yadav and A. Gattani, “Revisiting the influence of artificial roughness shapes on heat transfer enhancement.” Mater. Today Proc., vol. 62, pp. 1383–1391, 2022. DOI:10.1016/j.matpr.2021.12.254.
  • A. S. Yadav, et al., “CFD simulation on thermo-hydraulic characteristics of a circular tube having twisted tape inserts.” Mater. Today Proc., vol. 47, pp. 2790–2795, 2021. DOI:10.1016/j.matpr.2021.03.396.
  • A. Berber, M. Gürdal, and M. Yetimoğlu, “Experimental study on the heat transfer enhancement in a rectangular channel with curved winglets,” Exp. Heat Transf., vol. 35, no. 6, pp. 797–817, 2022. DOI: 10.1080/08916152.2021.1951897.
  • M. Khoshvaght-Aliabadi, A. Zanganeh, M. H. Akbari, and M. Eskandari, “Experimental investigation on thermal-hydraulic characteristics of a tube equipped with modified vortex-generator inserts,” Exp. Heat Transf., vol. 30, no. 1, pp. 11–24, 2017. DOI: 10.1080/08916152.2015.1135201.
  • U. Akdag, M. Yukselturk, H. Palancioglu, and S. Caliskan, “Heat transfer enhancement in a square channel with a set of triangular prisms: an experimental study,” Exp. Heat Transf., pp. 1–15, 2022. DOI: 10.1080/08916152.2022.2145528.
  • L. P. B. M. Janssen and M. M. C. Warmoeskerken, Transport Phenomena-data Companion, Delft, 1991.
  • D. Lytle and B. Webb, “Air jet impingement heat transfer at low nozzle-plate spacings,” Int. J. Heat Mass. Transf, vol. 37, no. 12, pp. 1687–1697, 1994. DOI: 10.1016/0017-9310(94)90059-0.
  • S. Kline and F. Mcclintock, “Describing Uncertainties in Single-Sample Experiments,” Mech. Eng., vol. 75, pp. 3–8, 1953.
  • R. N. Kackar, “Off-line quality control, parameter design, and the Taguchi Method.” J. Qual. Technol., vol. 17, pp. 176–188, 1985. DOI:10.1080/00224065.1985.11978964.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.