Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Latest Articles
137
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation of the heat transfer characteristics of a synthetic annular jet impingement on a flat surface

, , &
Received 28 Mar 2024, Accepted 10 May 2024, Published online: 19 May 2024

References

  • H. M. Maghrabie, “Heat transfer intensification of jet impingement using exciting jets, a comprehensive review,” Renewable. Sustainable. Energy. Rev., vol. 139, pp. 110684, 2021. DOI: 10.1016/j.rser.2020.110684.
  • R. Maithani and S. Sharma, “Thermo-hydraulic and exergetic analysis of rectangular channel with integrated jet impingement and roughness,” Exp. Heat. Transfer., pp. 1–23, DOI: 10.1080/08916152.2023.2298483. Published online Dec. 30, 2023.
  • J. Ning, L. Sun, Z. Ren, and X. Gao, “Effect of dry ice jet velocity on cooling characteristics of electronic chip based on optimized geometry,” Exp. Heat Transfer, pp. 1–19, 2023. DOI: 10.1080/08916152.2023.2232370.
  • M. V. Philippov, I. A. Chokhar, V. V. Terekhov, V. I. Terekhov, and I. N. Baranov, “Experimental investigation of heat and mass transfer of an annular impinging jet,” J. Phys. Conf. Ser., vol. 2039, no. 1, pp. 012028, 2021. DOI: 10.1088/1742-6596/2039/1/012028.
  • S. D. Barewar, et al. “Optimization of jet impingement heat transfer: A review on advanced techniques and parameters,” Therm. Sci. Eng. Prog., vol. 39, no. 101697, pp. 101697, 2023. DOI: 10.1016/j.tsep.2023.101697.
  • P. K. Singh, J. Joshi, and S. K. Sahu, “Thermal characteristics of metal foamed flat plate with circular and elliptical impinging jets,” Exp. Heat. Transfer., pp. 1–26, 2023. DOI: 10.1080/08916152.2023.2290268.
  • L. Dhruw, H. B. Kothadia, and R. A. Kumar, “Area average heat transfer from a vertical flat plate impinged by circular inclined jet,” Exp. Heat. Transfer., pp. 1–22, 2023. DOI: 10.1080/08916152.2023.2224787.
  • R. J. Talapati and V. V. Katti, “Local heat transfer characteristics of circular multiple air jet impinging on a semicircular concave surface,” Exp. Heat. Transfer., pp. 1–24, 2023. DOI: 10.1080/08916152.2023.2209894.
  • R. D. Plant and M. Z. S. Jacob Friedman, “A review of jet impingement cooling,” Int. J. Thermofluids., vol. 17, no. 100312, pp. 100312, 2023. DOI: 10.1016/j.ijft.2023.100312.
  • Y. Zhong, C. Zhou, and Y. Shi, “Effect of the nozzle geometry on flow field and heat transfer in annular jet impingement,” Energies, vol. 15, no. 4271, pp. 4271, 2022. DOI: 10.3390/en15124271.
  • S. V. Kalinina, V. I. Terekhov, and K. A. Sharov, “Special features of flow in an annular jet impinging on a barrier,” Fluid. Dyn., vol. 50, no. 5, pp. 665–671, 2015. DOI: 10.1134/S0015462815050087.
  • O. Aydin and B. Markal, “Experimental investigation of coaxial impinging air jets,” Appl. Therm. Eng., vol. 141, pp. 1120–1130, 2018. DOI: 10.1016/j.applthermaleng.2018.06.066.
  • N. Çelik and E. Turgut, “Design analysis of an experimental jet impingement study by using Taguchi method,” Heat. Mass. Transfer., vol. 48, no. 8, pp. 1407–1413, 2012. DOI: 10.1007/s00231-012-0989-7.
  • F. Afroz and M. A. R. Sharif, “Numerical study of turbulent annular impinging jet flow and heat transfer from a flat surface,” Appl. Therm. Eng., vol. 138, pp. 154–172, 2018. DOI: 10.1016/j.applthermaleng.2018.04.007.
  • V. I. Terekhov, S. V. Kalinina, and K. A. Sharov, “Convective heat transfer at annular jet impingement on a flat blockage,” Heat. Mass. Transfer. Phys. Gasdynamics., vol. 56, no. 2, pp. 229–234, 2018. DOI: 10.1134/S0018151X18010194.
  • M. Fenot, E. Dorignac, and R. Lantier, “Heat transfer and flow structure of a hot annular impinging jet,” Inter. J. Therm. Sci., vol. 170, no. 107091, pp. 2021, 2021. DOI: 10.1016/j.ijthermalsci.2021.107091.
  • P. Dutta and H. Chattopadhyay, “Numerical analysis of transport phenomena under turbulent annular impinging jet,” Comput. Thermal. Scien., vol. 13, no. 2, pp. 1–19, 2021. DOI: 10.1615/ComputThermalScien.2020035055.
  • P. Dutta, H. Chattopadhyay, and S. Bhattacharyya, “Numerical investigations on turbulent transport phenomena over a moving surface due to impinging annular jets,” Heat. Transfer. Eng., pp. 1–17, 2024. DOI: 10.1080/01457632.2023.2301155.
  • F. V. Barbosa, S. F. C. F. Teixeira, and J. C. F. Teixeira, “Convection from multiple air jet impingement - a review,” Appl. Therm. Eng., vol. 218, no. 119307, pp. 2023, 2023. DOI: 10.1016/j.applthermaleng.2022.119307.
  • H. Kaya and E. Alp, “Experimental investigation of effect of iron oxide nanofluids with different morphology on heat transfer of multiple impinging jets,” Exp. Heat. Transfer., vol. 36, no. 5, pp. 719–733, 2023. DOI: 10.1080/08916152.2023.2212671.
  • T. Tu, S. Chen, and C. Xu, “Conjugated heat transfer simulation of flow mechanism and heat transfer characteristic of sweeping jet impinging on leading edge in turbine cascade,” Appl. Therm. Eng., vol. 236, no. 121839, pp. 121839, 2024. DOI: 10.1016/j.applthermaleng.2023.121839.
  • B. L. Smith and G. W. Swift, “A comparison between synthetic jets and continuous jets,” Exp. Fluids, vol. 34, no. 4, pp. 467–472, 2003. DOI: 10.1007/s00348-002-0577-6.
  • P. Xu, A. S. Mujumdar, H. J. Poh, and B. Yu, “Heat transfer under a pulsed slot turbulent impinging jet at large temperature differences,” Therm. Sci., vol. 14, no. 1, pp. 271–281, 2010. DOI: 10.2298/TSCI1001271X.
  • S. Panda, J. Pasa, and V. Arumuru, “Characterisation of an independently controlled coaxial synthetic jet,” Sens. Actuators. A. Phys., vol. 359, no. 114469, pp. 114469, 2023. DOI: 10.1016/j.sna.2023.114469.
  • O. A. Zargar, R. F. Huang, and C. M. Hsu, “Effect of acoustic excitation on flames of swirling dual-disk double-concentric jets,” Exp. Therm. Fluid Sci., vol. 100, pp. 337–348, 2019. DOI: 10.1016/j.expthermflusci.2018.09.018.
  • J. W. Tan, Y. W. Lyu, J. Z. Zhang, and J. Y. Zhang, “Experimental study on heat transfer enhancement of square-array jet impingement by using an integrated synthetic jet actuator,” Sci. China. Technol. Sci., vol. 66, no. 12, pp. 3439–3449, 2023. DOI: 10.1007/s11431-022-2384-6.
  • Z. Travnicek and V. Tesar, “Annular impinging jet with recirculation zone expanded by acoustic excitation,” Int. J. Heat. Mass. Transfer., vol. 47, no. 10–11, pp. 2329–2341, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.10.032.
  • P. Sharma, D. Mirikar, S. K. Sahu, and H. Yadav, “An experimental investigation on the influence of Strouhal number and amplitude on the flow and heat transfer behavior of synthetic jet impingement,” Exp. Heat. Transfer., pp. 1–26, 2024. DOI: 10.1080/08916152.2024.2329629.
  • Z. Trávníček, V. Tesař, Z. Broučková, and K. Peszyński, “Annular impinging jet controlled by radial synthetic jets,” Heat. Transfer. Eng., vol. 35, no. 16–17, pp. 1450–1461, 2014. DOI: 10.1080/01457632.2014.889467.
  • L. D. Mangate and M. B. Chaudhari, “Heat transfer and acoustic study of impinging synthetic jet using diamond and oval shape orifice,” Inter. J. Therm. Sci., vol. 89, pp. 100–109, 2015. DOI: 10.1016/j.ijthermalsci.2014.10.006.
  • T. S. O. Donovan and D. B. Murray, “Heat transfer to an acoustically excited impinging air jet,” 5th European Thermal-Sciences Conference, The Netherlands, 2008.
  • G. Krishan, K. C. Aw, and R. N. Sharma, “Synthetic jet impingement heat transfer enhancement—A review,” Appl. Thermal. Eng., vol. 149, pp. 1305–1323, 2019. DOI: 10.1016/j.applthermaleng.2018.12.134.
  • A. Arshad, M. Jabbal, and Y. Yan, “Synthetic jet actuators for heat transfer enhancement – a critical review,” Int. J. Heat. Mass. Transfer., vol. 146, no. 118815, pp. 2020, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118815.
  • X. Tan, J. Zhang, S. Yong, and G. Xie, “An experimental investigation on comparison of synthetic and continuous jets impingement heat transfer,” Int. J. Heat. Mass. Transfer., vol. 90, pp. 227–238, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.06.065.
  • X. Deng, Z. B. Luo, Z. X. Xia, and W. J. Gong, “Experimental investigation on the flow regime and impingement heat transfer of dual synthetic jet,” Inter. J. Therm. Sci., vol. 145, no. 1058642, pp. 105864, 2019. DOI: 10.1016/j.ijthermalsci.2019.02.039.
  • U. Akdag, S. Akcay, and M. L. Karabayır, “Experimental investigation of the heat transfer characteristics of a pulsating impinging jet on a flat surface,” J. Fac. Eng. Archit. Gaz., vol. 38, no. 2, pp. 889–899, 2023. DOI: 10.17341/gazimmfd.1024995.
  • P. K. Singh, P. K. Upadhyay, H. Yadav, and S. K. Sahu, “An experimental investigation on the thermal behavior of synthetic jets involving non-circular orifices with varying wave patterns,” Exp. Heat. Transfer., pp. 1–18, 2023. DOI: 10.1080/08916152.2023.2248475.
  • P. K. Singh, H. Yadav, P. K. Upadhyay, and S. K. Sahu, “Influence of waveforms on the heat transfer behavior of multi-orifice synthetic jet,” Exp. Heat. Transfer., pp. 1–16, 2024. DOI: 10.1080/08916152.2024.2341739.
  • S. Rakhsha, M. R. Zargarabadi, and S. Saedodin, “Experimental and numerical study of flow and heat transfer from a pulsed jet impinging on a pinned surface,” Exp. Heat Transfer, vol. 34, no. 4, pp. 376–391, 2021. DOI: 10.1080/08916152.2020.1755388.
  • J. P. Holman, Experimental Methods for Engineers. New York, USA: McGraw-Hill, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.