595
Views
53
CrossRef citations to date
0
Altmetric
Original

Autoantibody-mediated disorders of the central nervous system

&
Pages 55-65 | Published online: 07 Jul 2009

References

  • Lang B, Vincent A. Autoantibodies to ion channels at the neuromuscular junction. Autoimmun Rev 2003; 2: 94–100
  • Hart IK, Waters C, Vincent A, Newland C, Beeson D, Pongs O, Morris C, Newsom-Davis J. Autoantibodies detected to expressed K+ channels are implicated in neuromyotonia. Ann Neurol 1997; 41: 238–246
  • Kleopa KA, Elman LB, Lang B, Vincent A, Scherer SS. Neuromyotonia and limbic encephalitis sera target mature Shaker-type K+ channels: Subunit specificity correlates with clinical manifestations. Brain 2006; 129: 1570–1584
  • Shillito P, Molenaar PC, Vincent A, Leys K, Zheng W, van den Berg RJ, Plomp JJ, van Kempen GT, Chauplannaz G, Wintzen AR, van Dijk JG, Newsom-Davis J. Acquired neuromyotonia: Evidence for autoantibodies directed against K+ channels of peripheral nerves. Ann Neurol 1995; 38: 701–702
  • Liguori R, Vincent A, Clover L, Avoni P, Plazzi G, Cortelli P, Baruzzi A, Carey T, Gambetti P, Lugaresi E, Montagna P. Morvan's syndrome: Peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels. Brain 2001; 124: 2417–2426
  • Cottrell DA, Blackmore KJ, Fawcett PR, Birchall D, Vincent A, Barnard S, Walls TJ. Sub-acute presentation of Morvan's syndrome after thymectomy. J Neurol Neurosurg Psychiatry 2004; 75: 1504–1505
  • Alamowitch S, Graus F, Uchuya M, Rene R, Bescansa E, Delattre JY. Limbic encephalitis and small cell lung cancer. Clinical and immunological features. Brain 1997; 120: 923–928
  • Vincent A, Buckley C, Schott JM, Baker I, Dewar BK, Detert N, Clover L, Parkinson A, Bien CG, Omer S, Lang B, Rossor MN, Palace J. Potassium channel antibody-associated encephalopathy: A potentially immunotherapy-responsive form of limbic encephalitis. Brain 2004; 127: 701–712
  • Thieben MJ, Lennon VA, Boeve BF, Aksamit AJ, Keegan M, Vernino S. Potentially reversible autoimmune limbic encephalitis with neuronal potassium channel antibody. Neurology 2004; 62: 1177–1182
  • Coleman SK, Newcombe J, Pryke J, Dolly JO. Subunit composition of Kv1 channels in human CNS. J Neurochem 1999; 73: 849–858
  • Tomimitsu H, Arimura K, Nagado T, Watanabe O, Otsuka R, Kurono A, Sonoda Y, Osame M, Kameyama M. Mechanism of action of voltage-gated K+ channel antibodies in acquired neuromyotonia. Ann Neurol 2004; 56: 440–444
  • Ances BM, Vitaliani R, Taylor RA, Liebeskind DS, Voloschin A, Houghton DJ, Galetta SL, Dichter M, Alavi A, Rosenfeld MR, Dalmau J. Treatment-responsive limbic encephalitis identified by neutropil antibodies: MRI and PET correlates. Brain 2005; 128: 1764–1777
  • Bataller L, Kleopa KA, Wu GF, Rossi JE, Rosenfeld MR, Dalmau J. Autoimmune limbic encephalitis in 39 patients: Immunophenotypes and outcomes. J Neurol Neurosurg Psychiatry 2007; 78: 381–385
  • Palace J, Lang B. Epilepsy: An autoimmune disease?. J Neurol Neurosurg Psychiatry 2000; 69: 711–714
  • Dedek K, Kunath B, Kananura C, Reuner U, Jentsch TJ, Steinlein OK. Myokymia and neonatal epilepsy by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc Natl Acad Sci USA 2001; 98: 12272–12277
  • McKnight K, Jiang Y, Hart Y, Cavey A, Wroe S, Blank M, Shoenfeld Y, Vincent A, Palace J, Lang B. Serum antibodies in epilepsy and seizure-associated disorders. Neurology 2005; 65: 1730–1736
  • Majoie M, de Baets M, Renier W, Lang B, Vincent A. Antibodies to voltage-gated potassium channels in epilepsy. Epilepsy Res 2006; 71: 135–141
  • Costa M, Saiz A, Casamitjana R, Fernandez Castaner M, Sanmarti A, Graus F, Jaraquemada D. T-cell reactivity to glutamic acid decarboxylase in stiff-man syndrome and cerebellar ataxia associated with polyendocrine autoimmunity. Clin Exp Immunol 2002; 129: 471–478
  • Baekkeskov S, Aanstoot HJ, Christgau S, Reetz A, Solimena M, Cascalho M, Folli F, Richter-Olesen H, De Camilli P. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 1990; 347: 51–56
  • Solimena M, Folli F, Aparisi R, Pozza G, De Camilli P. Autoantibodies to GABA-ergic neurons and pancreatic beta cells in stiff-man syndrome. N Engl J Med 1990; 322: 1555–1560
  • McCorry D, Nicolson A, Smith D, Marson A, Feltbower RG, Chadwick DW. An association between type 1 diabetes and idiopathic generalized epilepsy. Ann Neurol 2006; 59: 204–206
  • Kwan P, Sills GJ, Kelly K, Butler E, Brodie MJ. Glutamic acid decarboxylase in controlled and uncontrolled epilepsy: A pilot study. Epilepsy Res 2000; 41: 191–195
  • Giometto B, Nicolao P, Macucci M, Tavolato B, Foxon R, Bottazzo GF. Temporal-lobe epilepsy associated with glutamic-acid-decarboxylase autoantibodies. Lancet 1998; 352: 457
  • Peltola J, Kulmala P, Isojarvi J, Saiz A, Latvala K, Palmio J, Savola K, Knip M, Keranen T, Graus F. Autoantibodies to glutamic acid decarboxylase in patients with therapy-resistant epilepsy. Neurology 2000; 55: 46–50
  • Honnorat J, Trouillas P, Thivolet C, Aguera M, Belin MF. Autoantibodies to glutamate decarboxylase in a patient with cerebellar cortical atrophy, peripheral neuropathy and slow eye movements. Arch Neurol 1995; 52: 462–468
  • Saiz A, Arpa J, Sagasta A, Casamitjana R, Zarranz JJ, Tolosa E, Graus F. Autoantibodies to glutamic acid decarboxylase in three patients with cerebellar ataxia, late-onset insulin-dependent diabetes mellitus, and polyendocrine autoimmunity. Neurology 1997; 49: 1026–1030
  • Abele M, Weller M, Mescheriakov S, Burk K, Dichgans J, Klockgether T. Cerebellar ataxia with glutamic acid decarboxylase autoantibodies. Neurology 1999; 52: 857–859
  • Vianello M, Giometto B, Vassanelli S, Canato M, Betterle C, Mucignat C. Peculiar labeling of cultured hippocampal neurons by different sera harbouring anti-glutamic acid decarboxylase autoantibodies. Exp Neurol 2006; 202: 514–518
  • Mitoma H, Song S-Y, Ishida K, Yamakuni T, Kobayashi T, Mizusawa H. Presynaptic impairment of cerebellar inhibitory synapses by an autoantibody to glutamate decarboxylase. J Neurol Sci 2000; 175: 40–44
  • Bartolomei F, Boucraut J, Barrie M, Kok J, Dravet C, Viallat D, Bernard D, Gastaut JL. Cryptogenic partial epilepsies with anti-GM1 antibodies: A new form of immune-mediated epilepsy?. Epilepsia 1996; 37: 922–926
  • Karpiak SE, Graf L, Rapport MM. Antiserum to brain gangliosides produces recurrent epileptiform activity. Science 1976; 194: 735–737
  • Rogers SW, Andrews PI, Gahring LC, Whisenand T, Cauley K, Crain B, Hughes TE, Heinemann SF, McNamara JO. Autoantibodies to glutamate receptor GluR3 in Rasmussen's encephalitis. Science 1994; 265: 648–651
  • Hart YM, Cortez M, Andermann F, Hwang P, Fish DR, Dulac O, Silver K, Fejerman N, Cross H, Sherwin A, Caraballo R. Medical treatment of Rasmussen's syndrome (chronic encephalitis and epilepsy): Effect of high-dose steroids or immunoglobulins in 19 patients. Neurology 1994; 44: 1030–1036
  • Leach JP, Chadwick DW, Miles JB, Hart IK. Improvement in adult-onset Rasmussen's encephalitis with long-term immunomodulatory therapy. Neurology 1999; 52: 738–742
  • Twyman RE, Gahring LC, Spiess J, Rogers SW. Glutamate receptor antibodies activate a subset of receptors and reveal an agonist-binding site. Neuron 1995; 14: 755–762
  • Whitney KD, McNamara JO. GluR3 autoantibodies destroy neural cells in a complement-dependent manner modulated by complement regulatory proteins. J Neurosci 2000; 20: 7307–7316
  • Wiendl H, Bien CG, Bernasconi P, Fleckenstein B, Elger CE, Dichgans J, Mantegazza R, Melms A. GluR3 antibodies: Prevalence in focal epilepsy but no specificity for Rasmussen's encephalitis. Neurology 2001; 57: 1511–1514
  • Watson R, Jiang Y, Bermudez I, Houlihan L, Clover L, McKnight K, Cross JH, Hart IK, Roubertie A, Valmier J, Hart Y, Palace J, Beeson D, Vincent A, Lang B. Absence of antibodies to glutamate receptor type 3 (GluR3) in Rasmussen encephalitis. Neurology 2004; 63: 43–50
  • Baranzini SE, Laxer K, Saketkhoo R, Elkins MK, Parent JM, Mantegazza R, Oksenberg JR. Analysis of antibody gene rearrangement, usage, and specificity in chronic focal encephalitis. Neurology 2002; 58: 709–716
  • Yang R, Puranam RS, Butler LS, Qian WH, He XP, Moyer MB, Blackburn K, Andrews PI, McNamara JO. Autoimmunity to munc-18 in Rasmussen's encephalitis. Neuron 2000; 28: 375–383
  • Watson R, Jepson JE, Bermudez I, Alexander S, Hart Y, McKnight K, Roubertie A, Fecto F, Valmier J, Sattelle DB, Beeson D, Vincent A, Lang B. Alpha7-acetylcholine receptor antibodies in two patients with Rasmussen encephalitis. Neurology 2005; 65: 1802–1804
  • Gahring LC, Carlson NG, Rogers SW. Antibodies prepared to neuronal glutamate receptor subunit 3 bind IFN alpha-receptors: Implications for an autoimmune process. Autoimmunity 1998; 28: 243–248
  • Bauer J, Bien CG, Lassmann H. Rasmussen's encephalitis: A role for autoimmune cytotoxic T lymphocytes. Curr Opin Neurol 2002; 15: 197–200
  • Ganor Y, Goldberg-Stern H, Lerman-Sagie T, Teichberg VI, Levite M. Autoimmune epilepsy: Distinct subpopulations of epilepsy patients harbor serum autoantibodies to either glutamate/AMPA receptor GluR3, glutamate/NMDA receptor subunit NR2A or double-stranded DNA. Epilepsy Res 2005; 65: 11–22
  • DeGiorgio LA, Konstantinov KN, Lee SC, Hardin JA, Volpe BT, Diamond B. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med 2001; 7: 1189–1193
  • Kowal C, DeGiorgio LA, Lee JY, Edgar MA, Huerta PT, Volpe BT, Diamond B. Human lupus autoantibodies against MNDA receptors mediate cognitive impairment. Proc Natl Acad Sci USA 2006; 103: 19854–19859
  • Huerta PT, Kowal C, DeGiorgio LA, Volpe BT, Diamond B. Immunity and behavior: Antibodies alter emotion. Proc Natl Acad Sci USA 2006; 103: 678–683
  • Takahashi Y, Mori H, Mishina M, Watanabe M, Kondo N, Shimomura J, Kubota Y, Matsuda K, Fukushima K, Shiroma N, Akasaka N, Nishida H, Imamura A, Watanabe H, Sugiyama N, Ikezawa M, Fujiwara T. Autoantibodies and cell-mediated autoimmunity to NMDA-type GluR epsilon2 in patients with Rasmussen's encephalitis and chronic progressive epilepsia partialis continua. Epilepsia 2005; 6: 152–158
  • Mochizuki Y, Mizutani T, Isozaki E, Ohtake T, Takahashi Y. Acute limbic encephalitis: A new entity?. Neurosci Lett 2006; 394: 5–8
  • Lang B, Newsom Davis J, Prior C, Wray D. Antibodies to motor nerve terminals: An electrophysiological study of a human myasthenic syndrome transferred to mouse. J Physiol (Lond) 1983; 344: 33545
  • Graus F, Lang B, Pozo-Rosich P, Saiz A, Casamitjana R, Vincent A. P/Q-type calcium channel antibodies in paraneoplastic cerebellar degeneration with lung cancer. Neurology 2002; 59: 764–766
  • Mason WP, Graus F, Lang B, Honnorat J, Delatrre J-Y, Vallderiola F, Antoine C, Rosenblum MK, Rosenfeld MR, Newsom-Davis J, Posner JB, Dalmau J. Paraneoplastic cerebellar degeneration and small-cell carcinoma. Brain 1998; 120: 1279–1300
  • Pinto A, Gillard S, Moss F, Whyte K, Burst P, Williams M, Stauderman K, Harpold M, Lang B, Newsom-Davis, Bleakman D, Lodge D, Boot J. Human autoantibodies specific for α1A calcium channel subunit reduce both P-type and Q-type calcium channels in cerebellar neurons. Proc Natl Acad Sci USA 1998; 95: 8328–8333
  • Oguro-Okano M, Griesmann GE, Wieben ED, Slaymaker SJ, Snutch TP, Lennon VA. Molecular diversity of neuronal-type calcium channels identified in small cell lung carcinoma. Mayo Clinic Proc 1992; 67: 1150–1159
  • Jun K, Piedras-Renteria ES, Smith SM, Wheeler DB, Lee SB, Lee TG, Chin H, Adams ME, Scheller RH, Tsien RW, Shin HS. Ablation of P/Q-type Ca(2+) channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the alpha(1A)-subunit. Proc Natl Acad Sci USA 1999; 96: 15245–15250
  • Fukuda T, Motomura M, Nakao Y, Shiraishi H, Yoshimura T, Iwanaga K, Tsujihata M, Eguchi K. Reduction of P/Q-type calcium channels in the postmortem cerebellum of paraneoplastic cerebellar degeneration with Lambert–Eaton myasthenic syndrome. Ann Neurol 2003; 53: 21–28
  • Hadjivassiliou M, Boscolo S, Davies-Jones GAB, Grunewald RA, Not T, Sanders DS, Simpson JE, Tongiorgi E, Williamson CA, Woodroofe NM. The humoral response in the pathogenesis of gluten ataxia. Neurology 2002; 58: 1221–1226
  • Bushara KO, Goebel SU, Shill H, Goldfarb LG, Hallet M. Gluten sensitivity in sporadic and hereditary cerebellar ataxia. Ann Neurol 2001; 49: 540–543
  • Chen D-H, Brkanac Z, Verlinda C, Tan X-J, Bylenok L, Nochlin D, Matsushita M, Lipe H, Wolff J, Fernandez M, Cimino P, Bird T, Raskind W. Missense mutations in the regulatory domain of PKC? A novel mechanism for dominant cerebellar ataxia. Am J Hum Gen 2003; 72: 839–849
  • Kinoshita A, de Leeuw B, Moll W, Coesmans M, Jaarsma D, Henzen-Logmans S, Vecht C, De Zeeuw C, Sekiyama N, Nakanishi S, Shigemoto R. Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N Engl J Med 2000; 342: 21–27
  • Pittock SJ, Weinshenker BG, Lucchinetti CF, Wingerchuk DM, Corboy JR, Lennon VA. Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Arch Neurol 2006; 63: 964–968
  • Keegan M, Konig F, McClelland R, Bruck W, Morales Y, Bitsch A, Panitch H, Lassmann H, Weinshenker B, Rodriguez M, Parisi J, Lucchinetti CF. Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet 2005; 366: 579–582
  • Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM, Trebst C, Weinshenker B, Wingerchuk D, Parisi JE, Lassmann H. A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain 2002; 125: 1450–1461
  • Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, Nakashima I, Weinshenker BG. A serum autoantibody marker of neuromyelitis optica: Distinction from multiple sclerosis. Lancet 2004; 364: 2106–2112
  • Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005; 202: 473–477
  • Snider LA, Swedo SE. Post-streptococcal autoimmune disorders of the central nervous system. Curr Opin Neurol 2003; 16: 359–365
  • Kirvan CA, Swedo SE, Heuser JS, Cunningham MW. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nature Med 2003; 9: 914–920
  • Dale RC, Candler PM, Church AJ, Wait R, Pocock JM, Giovannonni G. Neuronal surface glycolytic enzymes are autoantigen targets in post-streptococcal autoimmune CNS disease. J Neuroimmunol 2006; 172: 187–197
  • Singer HS, Hong JJ, Yoon DY, Williams PN. Serum autoantibodies do not differentiate PANDAS and Tourette syndrome from controls. Neurology 2005; 65: 1701–1707
  • Hallet JJ, Harling-Berg CJ, Knopf PM, Stopa EG, Kiessling LS. Anti-striatal antibodies in Tourette syndrome cause neuronal dysfunction. J Neuroimmunol 2000; 111: 195–202
  • Loiselle CR, Lee O, Moran TH, Singer HS. Striatal microinfusion of Tourette syndrome and PANDAS sera: Failure to induce behavioural changes. Mov Disorders 2004; 19: 390–396
  • Wilson J. Neuroimmunology of dancing eye syndrome in children. Dev Med Child Neurol 2006; 48: 693–696
  • Pranzatelli MR, Travelstead AL, Tate ED, Allison TJ, Moticka EJ, Franz DN, Nigro MA, Parke JT, Stumpf DA, Verhulst SJ. B- and T-cell markers in opsoclonus–myoclonus syndrome: Immunophenotyping of CSF lymphocytes. Neurology 2004; 62: 1526–1532
  • Pranzatelli MR, Travelstead AL, Tate ED, Allison TJ, Verhulst SJ. CSF B-cell expansion in opsoclonus–myoclonus syndrome: A biomarker of disease activity. Mov Disord 2004; 19: 770–777
  • Connolly AM, Pestronk A, Mehta S, Pranzatelli MR, Noetzel MJ. Serum autoantibodies in childhood opsoclonus–myoclonus syndrome: An analysis of antigenic targets in neural tissues. J Pediatr 1997; 30: 878–884
  • Korfei M, Fuhlhuber V, Schmidt-Woll T, Kaps M, Preissner KT, Blaes F. Functional characterisation of autoantibodies from patients with pediatric opsoclonus–myoclonus-syndrome. J Neuroimmunol 2005; 170: 150–157
  • Blaes F, Fuhlhuber V, Korfei M, Tschernatsch M, Behnisch W, Rostasy K, Hero B, Kaps M, Preissner KT. Surface-binding autoantibodies to cerebellar neurons in opsoclonus syndrome. Ann Neurol 2005; 58: 313–317
  • Castillo P, Woodruff B, Caselli R, Vernino S, Lucchinetti C, Swanson J, Noseworthy J, Aksamit A, Carter J, Sirven J, Hunder G, Fatourechi V, Mokri B, Drubach D, Pittock S, Lennon V, Boeve B. Steroid-responsive encephalopathy associated with autoimmune thyroiditis. Arch Neurol 2006; 63(2)197–202
  • Chong JY, Rowland LP, Utiger RD. Hashimoto encephalopathy: Syndrome or myth?. Arch Neurol 2003; 60: 164–171
  • Oide T, Tokuda T, Yazaki M, Watarai M, Mitsuhashi S, Kaneko K, Hashimoto T, Ohara S, Ikeda S. Anti-neuronal autoantibody in Hashimoto's encephalopathy: Neuropathological, immunohistochemical, and biochemical analysis of two patients. J Neurol Sci 2004; 217: 7–12
  • Ochi H, Horiuchi I, Araki N, Toda T, Araki T, Sato K, Murai H, Osoegawa M, Yamada T, Okamura K. Proteomic analysis of human brain identifies alpha-enolase as a novel autoantigen in Hashimoto's encephalopathy. FEBS Lett 2002; 528: 197–202
  • McCabe DJ, Burke T, Connolly S, Hutchinson M. Amnesic syndrome with bilateral mesial temporal lobe involvement in Hashimoto's encephalopathy. Neurology 2000; 54: 737–739
  • Darnell RB, Posner JB. Paraneoplastic syndromes involving the nervous system. N Engl J Med 2003; 349: 1543–1554
  • Madrid A, Gil-Peralta A, Gil-Neciga E, Gonzalez JR, Jarrin S. Morvan's fibrillary chorea: Remission after plasmapheresis. J Neurol 1996; 243: 350–353
  • Karpiak SE, Mahadik SP, Graf L, Rapport MM. An immunological model of epilepsy: Seizures induced by antibodies to GM1 ganglioside. Epilepsia 1981; 22: 89–196
  • Tokunaga M, Saito K, Kawabata D, Imura Y, Fujii T, Nakayamada S, Tsujimura S, Nawata M, Iwata S, Azuma T, Mimori T, Tanaka Y. Efficacy of rituximab (Anti-CD20) for refractory systemic lupus erythematosus involving the central nervous system. Ann Rheum Dis 2007; 66: 470–475

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.