1,538
Views
91
CrossRef citations to date
0
Altmetric
Original

Molecular mechanisms of autoimmunity

, , &
Pages 123-132 | Received 28 Nov 2007, Accepted 02 Jan 2008, Published online: 07 Jul 2009

References

  • Christadoss P, Krco CJ, Lennon VA, David CS. Genetic control of experimental autoimmune myasthenia gravis in mice. II. Lymphocyte proliferative response to acetylcholine receptor is dependent on Lyt-1+23- cells. J Immunol 1981; 126: 1646–1647
  • Christadoss P, Lennon VA, David C. Genetic control of experimental autoimmune myasthenia gravis in mice. I. Lymphocyte proliferative response to acetylcholine receptors is under H-2-linked Ir gene control. J Immunol 1979; 123: 2540–2543
  • Christadoss P, Lennon VA, Krco CJ, David CS. Genetic control of experimental autoimmune myasthenia gravis in mice. III. Ia molecules mediate cellular immune responsiveness to acetylcholine receptors. J Immunol 1982; 128: 1141–1144
  • Al-Toma A, Verbeek WH, Hadithi M, von Blomberg BM, Mulder CJ. Survival in refractory coeliac disease and enteropathy associated T cell lymphoma: Retrospective evaluation of single centre experience. Gut 2007; 1373–1378
  • Albani S. Infection and molecular mimicry in autoimmune diseases of childhood. Clin Exp Rheumatol 1994; 10(12)S35–S41
  • Behar SM, Porcelli SA. Mechanisms of autoimmune disease induction. The role of the immune response to microbial pathogens. Arthritis Rheum 1995; 38: 458–476
  • Blank M, Barzilai O, Shoenfeld Y. Molecular mimicry and autoimmunity. Clin Rev Allergy Immunol 2007; 32: 111–118
  • Bonsor DA, Grishkovskaya I, Dodson EJ, Kleanthous C. Molecular mimicry enables competitive recruitment by a natively disordered protein. J Am Chem Soc 2007; 129: 4800–4807
  • Burgio GR, Ugazio AG. How infection can trigger autoimmunity. Infection 1975; 3: 63–73
  • Damian RT. Molecular mimicry revisited. Parasitol Today 1987; 3: 263–266
  • Lake DF, Schluter SF, Wang E, Bernstein RM, Edmundson AB, Marchalonis JJ. Autoantibodies to the alpha/beta T-cell receptors in human immunodeficiency virus infection: Dysregulation and mimicry. Proc Natl Acad Sci USA 1994; 91: 10849–10853
  • Luo AM, Garza KM, Hunt D, Tung KS. Antigen mimicry in autoimmune disease sharing of amino acid residues critical for pathogenic T cell activation. J Clin Invest 1993; 92: 2117–2123
  • Marchalonis JJ, Lake DF, Schluter SF, Dehghanpisheh K, Watson RR, Ampel NM, Galgiani JN. Autoantibodies against peptide-defined epitopes of T-cell receptors in retrovirally infected humans and mice. Adv Exp Med Biol 1995; 383: 211–222
  • Pender MP. Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol 2003; 24: 584–588
  • Root-Bernstein RS, Dewitt SH. CD4 similarity to proteins of infectious agents in AIDS and their role in autoimmunity. Med Hypotheses 1994; 43: 361–371
  • Tuckova L, Tlaskalova-Hogenova H, Farre MA, Karska K, Rossmann P, Kolinska J, Kocna P. Molecular mimicry as a possible cause of autoimmune reactions in celiac disease? Antibodies to gliadin cross-react with epitopes on enterocytes. Clin Immunol Immunopathol 1995; 74: 170–176
  • Vaughan JH, Valbracht JR, Nguyen MD, Handley HH, Smith RS, Patrick K, Rhodes GH. Epstein–Barr virus-induced autoimmune responses. I. Immunoglobulin M autoantibodies to proteins mimicking and not mimicking Epstein–Barr virus nuclear antigen-1. J Clin Invest 1995; 95: 1306–1315
  • Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: Viral peptides activate human T cell clones specific for myelin basic protein. Cell 1995; 80: 695–705
  • Ziegler JL, Stites DP. Hypothesis: AIDS is an autoimmune disease directed at the immune system and triggered by a lymphotropic retrovirus. Clin Immunol Immunopathol 1986; 41: 305–313
  • Atassi MZ. Antigenic structure of myoglobin: The complete immunochemical anatomy of a protein and conclusions relating to antigenic structures of proteins. Immunochemistry 1975; 12: 423–438
  • Atassi MZ. Precise determination of the entire antigenic structure of lysozyme: Molecular features of protein antigenic structures and potential of “surface-simulation” synthesis—a powerful new concept for protein binding sites. Immunochemistry 1978; 15: 909–936
  • Atassi MZ. Antigenic structures of proteins. Their determination has revealed important aspects of immune recognition and generated strategies for synthetic mimicking of protein binding sites. Eur J Biochem 1984; 145: 1–20
  • Atassi MZ, Dolimbek BZ. Mapping of the antibody-binding regions on the HN-domain (residues 449–859) of botulinum neurotoxin A with antitoxin antibodies from four host species. Full profile of the continuous antigenic regions of the H-chain of botulinum neurotoxin A. Protein J 2004; 23: 39–52
  • Dolimbek BZ, Aoki KR, Steward LE, Jankovic J, Atassi MZ. Mapping of the regions on the heavy chain of botulinum neurotoxin A (BoNT/A) recognized by antibodies of cervical dystonia patients with immunoresistance to BoNT/A. Mol Immunol 2007; 44: 1029–1041
  • Kazim AL, Atassi MZ. Prediction and conformation by synthesis of two antigenic sites in human haemoglobin by extrapolation from the known antigenic structure of sperm-whale myoglobin. Biochem J 1977; 167: 275–278
  • Kazim AL, Atassi MZ. Structurally inherent antigenic sites. Localization of the antigenic sites of the alpha-chain of human haemoglobin in three host species by a comprehensive synthetic approach. Biochem J 1982; 203: 201–208
  • Yoshioka N, Atassi MZ. Antigenic structure of human haemoglobin. Localization of the antigenic sites of the beta-chain in three host species by synthetic overlapping peptides representing the entire chain. Biochem J 1986; 234: 441–447
  • Tsang RS, Valdivieso-Garcia A. Pathogenesis of Guillain–Barre syndrome. Expert Rev Anti Infect Ther 2003; 1: 597–608
  • Ashizawa T, Ruan KH, Jinnai K, Atassi MZ. Profile of the regions on the alpha-chain of human acetylcholine receptor recognized by autoantibodies in myasthenia gravis. Mol Immunol 1992; 29: 1507–1514
  • Oshima M, Ashizawa T, Pollack MS, Atassi MZ. Autoimmune T cell recognition of human acetylcholine receptor: The sites of T cell recognition in myasthenia gravis on the extracellular part of the alpha subunit. Eur J Immunol 1990; 20: 2563–2569
  • Deitiker P, Ashizawa T, Atassi MZ. Antigen mimicry in autoimmune disease. Can immune responses to microbial antigens that mimic acetylcholine receptor act as initial triggers of myasthenia gravis?. Hum Immunol 2000; 61: 255–265
  • Pitkanen J, Peterson P. Autoimmune regulator: From loss of function to autoimmunity. Genes Immun 2003; 4: 12–21
  • Larsen F, Madsen HO, Sim RB, Koch C, Garred P. Disease-associated mutations in human mannose-binding lectin compromise oligomerization and activity of the final protein. J Biol Chem 2004; 279: 21302–21311
  • Yu CC, Mamchak AA, DeFranco AL. Signaling mutations and autoimmunity. Curr Dir Autoimmun 2003; 6: 61–88
  • Doyle HA, Mamula MJ. Posttranslational protein modifications: New flavors in the menu of autoantigens. Curr Opin Rheumatol 2002; 14: 244–249
  • Doyle HA, Mamula MJ. Posttranslational modifications of self-antigens. Ann N Y Acad Sci 2005; 1050: 1–9
  • Anderton SM. Post-translational modifications of self antigens: Implications for autoimmunity. Curr Opin Immunol 2004; 16: 753–758
  • Cloos PA, Christgau S. Post-translational modifications of proteins: Implications for aging, antigen recognition, and autoimmunity. Biogerontology 2004; 5: 139–158
  • Mamula MJ, Gee RJ, Elliott JI, Sette A, Southwood S, Jones PJ, Blier PR. Isoaspartyl post-translational modification triggers autoimmune responses to self-proteins. J Biol Chem 1999; 274: 22321–22327
  • Yang ML, Doyle HA, Gee RJ, Lowenson JD, Clarke S, Lawson BR, Aswad DW, Mamula MJ. Intracellular protein modification associated with altered T cell functions in autoimmunity. J Immunol 2006; 177: 4541–4549
  • Yamada R, Suzuki A, Chang X, Yamamoto K. Citrullinated proteins in rheumatoid arthritis. Front Biosci 2005; 10: 54–64
  • van Boekel MA, van Venrooij WJ. Modifications of arginines and their role in autoimmunity. Autoimmun Rev 2003; 2: 57–62
  • Van den Steen PE, Proost P, Brand DD, Kang AH, Van Damme J, Opdenakker G. Generation of glycosylated remnant epitopes from human collagen type II by gelatinase B. Biochemistry 2004; 43: 10809–10816
  • Pang M, Setoyama Y, Tsuzaka K, Yoshimoto K, Amano K, Abe T, Takeuchi T. Defective expression and tyrosine phosphorylation of the T cell receptor zeta chain in peripheral blood T cells from systemic lupus erythematosus patients. Clin Exp Immunol 2002; 129: 160–168
  • Mustelin T. Keeping the T-cell immune response in balance: Role of protein tyrosine phosphatases in autoimmunity. Curr Dir Autoimmun 2002; 5: 176–190
  • Nissim A, Winyard PG, Corrigall V, Fatah R, Perrett D, Panayi G, Chernajovsky Y. Generation of neoantigenic epitopes after posttranslational modification of type II collagen by factors present within the inflamed joint. Arthritis Rheum 2005; 52: 3829–3838
  • Frey N, Christen U, Jeno P, Yeaman SJ, Shimomura Y, Kenna JG, Gandolfi AJ, Ranek L, Gut J. The lipoic acid containing components of the 2-oxoacid dehydrogenase complexes mimic trifluoroacetylated proteins and are autoantigens associated with halothane hepatitis. Chem Res Toxicol 1995; 8: 736–746
  • Barregard L, Enestrom S, Ljunghusen O, Wieslander J, Hultman P. A study of autoantibodies and circulating immune complexes in mercury-exposed chloralkali workers. Int Arch Occup Environ Health 1997; 70: 101–106
  • Sollid LM, Markussen G, Ek J, Gjerde H, Vartdal F, Thorsby E. Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. J Exp Med 1989; 169: 345–350
  • Tighe MR, Ciclitira PJ. The gluten–host interaction. Baillieres Clin Gastroenterol 1995; 9: 211–230
  • Tighe MR, Hall MA, Barbado M, Cardi E, Welsh KI, Ciclitira PJ. HLA class II alleles associated with celiac disease susceptibility in a southern European population. Tissue Antigens 1992; 40: 90–97
  • van de Wal Y, Kooy Y, van Veelen P, Pena S, Mearin L, Papadopoulos G, Koning F. Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J Immunol 1998; 161: 1585–1588
  • Berti C, Roncoroni L, Falini ML, Caramanico R, Dolfini E, Bardella MT, Elli L, Terrani C, Forlani F. Celiac-related properties of chemically and enzymatically modified gluten proteins. J Agric Food Chem 2007; 55: 2482–2488
  • Bouvet JP, Zouali M. Silent antibodies. Arch Inst Pasteur Tunis 2005; 82: 3–8
  • Macario AJ. Heat-shock proteins and molecular chaperones: Implications for pathogenesis, diagnostics, and therapeutics. Int J Clin Lab Res 1995; 25: 59–70
  • Fujimoto M, Hamaguchi Y, Yazawa N, Komura K, Takehara K, Sato S. Autoantibodies to a collagen-specific molecular chaperone, heat-shock protein 47, in systemic sclerosis. Clin Exp Immunol 2004; 138: 534–539
  • Karopoulos C, Rowley MJ, Handley CJ, Strugnell RA. Antibody reactivity to mycobacterial 65 kDa heat shock protein: Relevance to autoimmunity. J Autoimmun 1995; 8: 235–248
  • Miyata M, Kogure A, Sato H, Kodama E, Watanabe H, Ohira H, Kuroda M, Takagi T, Sato Y, Kasukawa R. Detection of antibodies to 65 kD heat shock protein and to human superoxide dismutase in autoimmune hepatitis-molecular mimicry between 65 kD heat shock protein and superoxide dismutase. Clin Rheumatol 1995; 14: 673–677
  • Prohaszka Z. Chaperones as part of immune networks. Adv Exp Med Biol 2007; 594: 159–166
  • Routsias JG, Tzioufas AG. The role of chaperone proteins in autoimmunity. Ann N Y Acad Sci 2006; 1088: 52–64
  • Tebo AE, Szankasi P, Hillman TA, Litwin CM, Hill HR. Antibody reactivity to heat shock protein 70 and inner ear-specific proteins in patients with idiopathic sensorineural hearing loss. Clin Exp Immunol 2006; 146: 427–432
  • Franz S, Gaipl US, Munoz LE, Sheriff A, Beer A, Kalden JR, Herrmann M. Apoptosis and autoimmunity: When apoptotic cells break their silence. Curr Rheumatol Rep 2006; 8: 245–247
  • Gardell JL, Dazin P, Islar J, Menge T, Genain CP, Lalive PH. Apoptotic effects of Human Herpesvirus-6A on glia and neurons as potential triggers for central nervous system autoimmunity. J Clin Virol 2006; 1(37)S11–S16
  • Navratil JS, Liu CC, Ahearn JM. Apoptosis and autoimmunity. Immunol Res 2006; 36: 3–12
  • Viorritto IC, Nikolov NP, Siegel RM. Autoimmunity versus tolerance: Can dying cells tip the balance?. Clin Immunol 2007; 122: 125–134
  • Gronski MA, Weinem M. Death pathways in T cell homeostasis and their role in autoimmune diabetes. Rev Diabet Stud 2006; 3: 88–95
  • Lee SC, Pervaiz S. Apoptosis in the pathophysiology of diabetes mellitus. Int J Biochem Cell Biol 2007; 39: 497–504
  • Martelli AM, Zweyer M, Ochs RL, Tazzari PL, Tabellini G, Narducci P, Bortul R. Nuclear apoptotic changes: An overview. J Cell Biochem 2001; 82: 634–646
  • Wucherpfennig KW. Autoimmunity in the central nervous system: Mechanisms of antigen presentation and recognition. Clin Immunol Immunopathol 1994; 72: 293–306
  • Cline AM, Radic MZ. Apoptosis, subcellular particles, and autoimmunity. Clin Immunol 2004; 112: 175–182
  • Wu X, Molinaro C, Johnson N, Casiano CA. Secondary necrosis is a source of proteolytically modified forms of specific intracellular autoantigens: Implications for systemic autoimmunity. Arthritis Rheum 2001; 44: 2642–2652
  • Gaipl US, Sheriff A, Franz S, Munoz LE, Voll RE, Kalden JR, Herrmann M. Inefficient clearance of dying cells and autoreactivity. Curr Top Microbiol Immunol 2006; 305: 161–176
  • Hayashi T, Faustman D. The role of the proteasome in autoimmunity. Diabetes Metab Res Rev 2000; 16: 325–337
  • Decker P, Singh-Jasuja H, Haager S, Kotter I, Rammensee HG. Nucleosome, the main autoantigen in systemic lupus erythematosus, induces direct dendritic cell activation via a MyD88-independent pathway: Consequences on inflammation. J Immunol 2005; 174: 3326–3334
  • Balada E, Villarreal-Tolchinsky J, Ordi-Ros J, Labrador M, Serrano-Acedo S, Martinez-Lostao L, Vilardell-Tarres M. Multiplex family-based study in systemic lupus erythematosus: Association between the R620W polymorphism of PTPN22 and the FcgammaRIIa (CD32A) R131 allele. Tissue Antigens 2006; 68: 432–438
  • Chu EB, Hobbs MV, Wilson CB, Romball CG, Linsley PS, Weigle WO. Intervention of CD4+ cell subset shifts and autoimmunity in the BXSB mouse by murine CTLA4Ig. J Immunol 1996; 156: 1262–1268
  • Merriman TR, Pearce SH. Genetic progress towards the molecular basis of common autoimmunity. Discov Med 2006; 6: 40–45
  • Michou L, Lasbleiz S, Rat AC, Migliorini P, Balsa A, Westhovens R, Barrera P, Alves H, Pierlot C, Glikmans E, Garnier S, Dausset J, Vaz C, Fernandes M, Petit-Teixeira E, Lemaire I, Pascual-Salcedo D, Bombardieri S, Dequeker J, Radstake TR, Van Riel P, van de Putte L, Lopes-Vaz A, Prum B, Bardin T, Dieude P, Cornelis F. Linkage proof for PTPN22, a rheumatoid arthritis susceptibility gene and a human autoimmunity gene. Proc Natl Acad Sci USA 2007; 104: 1649–1654
  • Serrano NC, Millan P, Paez MC. Non-HLA associations with autoimmune diseases. Autoimmun Rev 2006; 5: 209–214
  • Fruman DA, Walsh CM. Signal transduction and autoimmunity: Introduction. Autoimmunity 2007; 40: 403–404
  • Vigano P, Lattuada D, Somigliana E, Abbiati A, Candiani M, Di Blasio AM. Variants of the CTLA4 gene that segregate with autoimmune diseases are not associated with endometriosis. Mol Hum Reprod 2005; 11: 745–749
  • Sigal LH. Basic science for the clinician 37: Protecting against autoimmunity-tolerance: Mechanisms of negative selection in the thymus. J Clin Rheumatol 2006; 12: 99–101
  • Ikegami H, Kawabata Y, Noso S, Fujisawa T, Ogihara T. Genetics of type 1 diabetes in Asian and Caucasian populations. Diabetes Res Clin Pract 2007; S116–S121
  • Park Y. Functional evaluation of the type 1 diabetes (T1D) susceptibility candidate genes. Diabetes Res Clin Pract 2007; S110–S115
  • Howson JM, Dunger DB, Nutland S, Stevens H, Wicker LS, Todd JA. A type 1 diabetes subgroup with a female bias is characterised by failure in tolerance to thyroid peroxidase at an early age and a strong association with the cytotoxic T-lymphocyte-associated antigen-4 gene. Diabetologia 2007; 50: 741–746
  • Donaldson P, Veeramani S, Baragiotta A, Floreani A, Venturi C, Pearce S, Wilson V, Jones D, James O, Taylor J, Newton J, Bassendine M. Cytotoxic T-lymphocyte-associated antigen-4 single nucleotide polymorphisms and haplotypes in primary biliary cirrhosis. Clin Gastroenterol Hepatol 2007; 5: 755–760
  • Magyari L, Farago B, Bene J, Horvatovich K, Lakner L, Varga M, Figler M, Gasztonyi B, Mozsik G, Melegh B. No association of the cytotoxic T-lymphocyte associated gene CTLA4+49A/G polymorphisms with Crohn's disease and ulcerative colitis in Hungarian population samples. World J Gastroenterol 2007; 13: 2205–2208
  • Bignon JS, Siminovitch KA. Identification of PTP1C mutation as the genetic defect in motheaten and viable motheaten mice: A step toward defining the roles of protein tyrosine phosphatases in the regulation of hemopoietic cell differentiation and function. Clin Immunol Immunopathol 1994; 73: 168–179
  • Burkhardt H, Huffmeier U, Spriewald B, Bohm B, Rau R, Kallert S, Engstrom A, Holmdahl R, Reis A. Association between protein tyrosine phosphatase 22 variant R620W in conjunction with the HLA-DRB1 shared epitope and humoral autoimmunity to an immunodominant epitope of cartilage-specific type II collagen in early rheumatoid arthritis. Arthritis Rheum 2006; 54: 82–89
  • Chelala C, Duchatelet S, Joffret ML, Bergholdt R, Dubois-Laforgue D, Ghandil P, Pociot F, Caillat-Zucman S, Timsit J, Julier C. PTPN22 R620W functional variant in type 1 diabetes and autoimmunity related traits. Diabetes 2007; 56: 522–526
  • McCulloch J, Siminovitch KA. Involvement of the protein tyrosine phosphatase PTP1C in cellular physiology, autoimmunity and oncogenesis. Adv Exp Med Biol 1994; 365: 245–254
  • Vang T, Miletic AV, Bottini N, Mustelin T. Protein tyrosine phosphatase PTPN22 in human autoimmunity. Autoimmunity 2007; 40: 453–461
  • Chung SA, Criswell LA. PTPN22: Its role in SLE and autoimmunity. Autoimmunity 2007; 40: 582–590
  • Balkwill F. TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev 2006; 25: 409–416
  • Kastelan S, Zjacic-Rotkvic V, Kastelan Z. Could diabetic retinopathy be an autoimmune disease?. Med Hypotheses 2007; 68: 1016–1018
  • Matsuzaki T, Takagi A, Ikemura H, Matsuguchi T, Yokokura T. Intestinal microflora: Probiotics and autoimmunity. J Nutr 2007; 137: 798S–802S
  • Quadbeck B, Stucke M, Eckstein AK, Heise DJ, Mann K, Gieseler RK. Dysregulation of TNF/TNFR superfamily members: A systemic link between intra- and extrathyroidal manifestations in Graves' disease. Scand J Immunol 2006; 64: 523–530
  • Stefano GB, Paemen LR, Hughes TK, Jr. Autoimmunoregulation: Differential modulation of CD10/neutral endopeptidase 24.11 by tumor necrosis factor and neuropeptides. J Neuroimmunol 1992; 41: 9–14
  • Turner M, Londei M, Feldmann M. Human T cells from autoimmune and normal individuals can produce tumor necrosis factor. Eur J Immunol 1987; 17: 1807–1814
  • Martin DA, Elkon KB. Intracellular mammalian DNA stimulates myeloid dendritic cells to produce type I interferons predominantly through a toll-like receptor 9-independent pathway. Arthritis Rheum 2006; 54: 951–962
  • Gambineri E, Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol 2003; 15: 430–435
  • Coggeshall KM. Regulation of signal transduction by the Fc gamma receptor family members and their involvement in autoimmunity. Curr Dir Autoimmun 2002; 5: 1–29
  • Fulop T, Jr., Larbi A, Dupuis G, Pawelec G. Ageing, autoimmunity and arthritis: Perturbations of TCR signal transduction pathways with ageing—a biochemical paradigm for the ageing immune system. Arthritis Res Ther 2003; 5: 290–302
  • Casali P, Notkins AL. Probing the human B-cell repertoire with EBV: Polyreactive antibodies and CD5+B lymphocytes. Annu Rev Immunol 1989; 7: 513–535
  • Schettino EW, Ichiyoshi Y, Casali P. Structure–function relation in natural and disease-associated human autoantibodies. The antibodies, M Zanetti, JD Capra. Harwood Academic Publishers, Newark 1996; 2: 155–203
  • Casali P, Schettino EW. Structure and function of natural antibodies. Curr Top Microbiol Immunol 1996; 120: 167–179
  • Carroll MC, Prodeus AP. Linkages of innate and adaptive immunity. Curr Opin Immunol 1998; 10: 36–40
  • Zhou ZH, Zhang Y, Hu YF, Wahl LM, Cisar JO, Notkins AL. The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe 2007; 1: 51–61
  • Baxendale HE, Johnson M, Stephens RC, Yuste J, Klein N, Brown JS, Goldblatt D. Natural human antibodies to pneumococcus have distinctive molecular characteristics and protect against pneumococcal disease. Clin Exp Immunol 2008; 151: 51–60
  • Harindranath N, Ikematsu H, Notkins AL, Casali P. Structure of the VH and VL segments of polyreactive and monoreactive human natural antibodies to HIV-1 and Escherichia coli beta-galactosidase. Int Immunol 1993; 5: 1523–1533
  • Ikematsu H, Kasaian MT, Schettino EW, Casali P. Structural analysis of the VH-D-JH segments of human polyreactive IgG mAb. Evidence for somatic selection. J Immunol 1993; 151: 3604–3616
  • Phillips-Quagliata JM, Faria AM, Han J, Spencer DH, Haughton G, Casali P. IgG2a and igA co-expression by the natural autoantibody-producing murine B lymphoma T560. Autoimmunity 2001; 33: 181–197
  • Casali P, Burastero SE, Nakamura M, Inghirami G, Notkins AL. Human lymphocytes making rheumatoid factor and antibody to ssDNA belong to Leu-1+B-cell subset. Science 1987; 236: 77–81
  • Casali P, Notkins AL. CD5+B lymphocytes, polyreactive antibodies and the human B-cell repertoire. Immunol Today 1989; 10: 364–368
  • Kasaian MT, Ikematsu H, Casali P. CD5+B lymphocytes. Proc Soc Exp Biol Med 1991; 197: 226–241
  • Duan B, Morel L. Role of B-1a cells in autoimmunity. Autoimmun Rev 2006; 5: 403–408
  • Mohan C, Morel L, Yang P, Wakeland EK. Accumulation of splenic B1a cells with potent antigen-presenting capability in NZM2410 lupus-prone mice. Arthritis Rheum 1998; 41: 1652–1662
  • Burastero SE, Casali P. Characterization of human CD5 (Leu-1, OKT1)+B lymphocytes and the antibodies they produce. Contrib Microbiol Immunol 1989; 11: 231–262
  • Casali P. Polyclonal B cell activation and antigen-driven antibody response as mechanisms of autoantibody production in systemic lupus erythematosus. Autoimmunity 1990; 5: 147–150
  • Kasaian MT, Casali P. Autoimmunity-prone B-1 (CD5 B) cells, natural antibodies and self recognition. Autoimmunity 1993; 15: 315–329
  • Kasaian MT, Casali P. B-1 cellular origin and VH segment structure of IgG, IgA, and IgM anti-DNA autoantibodies in patients with systemic lupus erythematosus. Ann N Y Acad Sci 1995; 764: 410–423
  • Chai SK, Mantovani L, Kasaian MT, Casali P. Natural autoantibodies. Adv Exp Med Biol 1994; 347: 147–159
  • Schwimmbeck PL, Oldstone MB. Klebsiella pneumoniae and HLA B27-associated diseases of Reiter's syndrome and ankylosing spondylitis. Curr Top Microbiol Immunol 1989; 145: 45–56
  • Zhao ZS, Granucci F, Yeh L, Schaffer PA, Cantor H. Molecular mimicry by herpes simplex virus-type 1: Autoimmune disease after viral infection. Science 1998; 279: 1344–1347
  • Ichiyoshi Y, Casali P. Analysis of the structural correlates for antibody polyreactivity by multiple reassortments of chimeric human immunoglobulin heavy and light chain V segments. J Exp Med 1994; 180: 885–895
  • Ichiyoshi Y, Casali P. Analysis of the structural correlates for self-antigen binding by natural and disease-related autoantibodies. In vitro expression of recombinant and/or mutagenized human IgG. Ann N Y Acad Sci 1995; 764: 328–341
  • Schettino EW, Chai SK, Kasaian MT, Schroeder HW, Jr., Casali P. VHDJH gene sequences and antigen reactivity of monoclonal antibodies produced by human B-1 cells: Evidence for somatic selection. J Immunol 1997; 158: 2477–2489
  • Carroll MC, Holers VM. Innate autoimmunity. Adv Immunol 2005; 86: 137–157
  • Fleming SD. Natural antibodies, autoantibodies and complement activation in tissue injury. Autoimmunity 2006; 39: 379–386
  • Zhang M, Carroll MC. Natural antibody mediated innate autoimmune response. Mol Immunol 2007; 44: 103–110
  • Harindranath N, Goldfarb IS, Ikematsu H, Burastero SE, Wilder RL, Notkins AL, Casali P. Complete sequence of the genes encoding the VH and VL regions of low- and high-affinity monoclonal IgM and IgA1 rheumatoid factors produced by CD5+B cells from a rheumatoid arthritis patient. Int Immunol 1991; 3: 865–875
  • Mantovani L, Wilder RL, Casali P. Human rheumatoid B-1a (CD5+B) cells make somatically hypermutated high affinity IgM rheumatoid factors. J Immunol 1993; 151: 473–488
  • Kasaian MT, Ikematsu H, Balow JE, Casali P. Structure of the VH and VL segments of monoreactive and polyreactive IgA autoantibodies to DNA in patients with systemic lupus erythematosus. J Immunol 1994; 152: 3137–3151
  • Li Z, Schettino EW, Padlan E, Ikematsu H, Casali P. Structure–function analysis of a lupus anti-DNA autoantibody: Central role of the heavy chain complementarity-determining region 3 Arg in binding of double- and single-stranded DNA. Eur J Immunol 2000; 30: 2015–2226
  • Duquerroy S, Stura EA, Bressanelli S, Fabiane SM, Vaney MC, Beale D, Hamon M, Casali P, Rey FA, Sutton BJ, Taussig MJ. Crystal structure of a human autoimmune complex between IgM rheumatoid factor RF61 and IgG1 Fc reveals a novel epitope and evidence for affinity maturation. J Mol Biol 2007; 368: 1321–1331
  • Arnold LW, Pennell CA, McCray SK, Clarke SH. Development of B-1 cells: Segregation of phosphatidyl choline-specific B cells to the B-1 population occurs after immunoglobulin gene expression. J Exp Med 1994; 179: 1585–1595
  • Ikematsu H, Ichiyoshi Y, Schettino EW, Nakamura M, Casali P. VH and Vk segment structure of anti-insulin IgG autoantibodies in patients with insulin-dependent diabetes mellitus. Evidence for somatic selection. J Immunol 1994; 152: 1430–1441
  • Ikematsu W, Luan F-L, La Rosa L, Beltrami B, Nicoletti F, Buyon JP, Meroni PL, Balestrieri G, Casali P. Human anti-cardiolipin IgG monoclonal autoantibodies cause placental thrombosis and fetal loss in BALB/c mice. Arthritis Rheum 1998; 41: 1026–1039
  • Hardy RR. B-1 B cells: Development, selection, natural autoantibody and leukemia. Curr Opin Immunol 2006; 18: 547–555

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.