130
Views
16
CrossRef citations to date
0
Altmetric
Original Article

DICER and DROSHA gene expression and polymorphisms in autoimmune thyroid diseases

, , , , , , & show all
Pages 514-522 | Received 22 Feb 2016, Accepted 28 Aug 2016, Published online: 03 Nov 2016

References

  • Weetman, A. 2000. Chronic autoimmune thyroiditis. In The Thyroid: a Fundamental and Clinical Text, L. Braverman, R. Utiger, eds. Lippincott Williams & Wilkins, Philadelphia. p. 721–732
  • Menconi, F., Y. L. Oppenheim, and Y. Tomer. 2008. Graves' disease. In Diagnostic Criteria in Autoimmune Diseases, Y. Shoenfeld, R. Cervera, Y. Gershwin ME, eds. Humana Press, Totowa, NJ. p. 231–235
  • Bartel, D. P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116: 281–297
  • Friedman, R. C., K. K. Farh, C. B. Burge, and D. P. Bartel. 2009. Most mammalian mRNAs are conserved targets of microRNAs. Genome. Res. 19: 92–105
  • Ito, C., M. Watanabe, N. Okuda, C., et al. 2006. Association between the severity of Hashimoto's disease and the functional +874A/T polymorphism in the interferon-gamma gene. Endocr. J. 53: 473–478
  • Lewis, B. P., C. B. Burge, and D. P. Bartel. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120: 15–20
  • Ambros, V. 2004. The functions of animal microRNAs. Nature. 431: 350–355
  • Mendell, J. T. 2005. MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle. 4: 1179–1184
  • Baltimore, D., M. P. Boldin, R. M. O'Connell, et al. 2008. MicroRNAs: new regulators of immune cell development and function. Nat. Immunol. 9: 839–845
  • Lee, Y., K. Jeon, J. T. Lee et al. 2002. MicroRNA maturation: stepwise processing and subcellular localization. EMBO. J. 21: 4663–4670
  • Lee, Y., C. Ahn, J. Han, et al. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature. 425: 415–419
  • Kim, V. N., J. Han, and M. C. Siomi. 2009. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10: 126–139
  • Jafarnejad, S. M., C. Sjoestroem, M. Martinka, and G. Li. 2013. Expression of the RNase III enzyme DROSHA is reduced during progression of human cutaneous melanoma. Mod. Pathol. 26: 902–910
  • Muralidhar, B., D. Winder, M. Murray, et al. 2011. Functional evidence that Drosha overexpression in cervical squamous cell carcinoma affects cell phenotype and microRNA profiles. J. Pathol. 224: 496–507
  • Merritt, W. M., Y. G. Lin, L. Y. Han, et al. 2008. Dicer, Drosha, and outcomes in patients with ovarian cancer. N. Engl. J. Med. 359: 2641–2650
  • Cheng, C., X. Fu, P. Alves, and M. Gerstein. 2009. mRNA expression profiles show differential regulatory effects of microRNAs between estrogen receptor-positive and estrogen receptor-negative breast cancer. Genome. Biol. 10: R90
  • Ma, H., H. Yuan, Z. Yuan, et al. 2012. Genetic variations in key microRNA processing genes and risk of head and neck cancer: a case-control study in Chinese population. PLoS One. 7: e47544
  • Sung, H., K. M. Lee, J. Y. Choi, et al. 2011. Common genetic polymorphisms of microRNA biogenesis pathway genes and risk of breast cancer: a case-control study in Korea. Breast Cancer Res. Treat. 130: 939–951
  • Yuan, L., H. Chu, M. Wang, et al. 2013. Genetic variation in DROSHA 3'UTR regulated by hsa-miR-27b is associated with bladder cancer risk. PLoS One. 8: e81524
  • Kuehbacher, A., C. Urbich, A. M. Zeiher, and S. Dimmeler. 2007. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ. Res. 101: 59–68
  • Thulasingam, S., C. Massilamany, A. Gangaplara, et al. 2011. miR-27b*, an oxidative stress-responsive microRNA modulates nuclear factor-kB pathway in RAW 264.7 cells. Mol. Cell Biochem. 352: 181–188
  • Hewagama, A., G. Gorelik, D. Patel, et al. 2013. Overexpression of X-linked genes in T cells from women with lupus. J. Autoimmun. 41: 60–71
  • Ostermann, E., L. Tuddenham, C. Macquin, et al. 2012. Deregulation of type I IFN-dependent genes correlates with increased susceptibility to cytomegalovirus acute infection of dicer mutant mice. PLoS One. 7: e43744
  • Zhou, S., X. Dong, C. Zhang, et al. 2014. MicroRNAs are implicated in the suppression of CD4CD25 conventional T cell proliferation by CD4CD25 regulatory T cells. Mol. Immunol. 63: 464–472
  • Zhou, X., L. T. Jeker, B. T. Fife et al. 2008. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J. Exp. Med. 205: 1983–1991
  • Yeh, W. I., I. L. McWilliams, and L. E. Harrington. 2014. IFNgamma inhibits Th17 differentiation and function via Tbet-dependent and Tbet-independent mechanisms. J. Neuroimmunol. 267: 20–27
  • Nanba, T., M. Watanabe, N. Inoue, and Y. Iwatani. 2009. Increases of the Th1/Th2 cell ratio in severe Hashimoto's disease and in the proportion of Th17 cells in intractable Graves' disease. Thyroid. 19: 495–501
  • Lockshin, M. D. 2006. Sex differences in autoimmune disease. Lupus. 15: 753–756

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.