458
Views
23
CrossRef citations to date
0
Altmetric
Original Article

Topoisomerase I peptide-loaded dendritic cells induce autoantibody response as well as skin and lung fibrosis

, , , , , & show all
Pages 503-513 | Received 17 Mar 2016, Accepted 28 Aug 2016, Published online: 03 Nov 2016

References

  • Passaleva, A., G. Massai, M. Matucci-Cerinic, et al 2009. Immunological abnormalities in a group of patients with limited cutaneous systemic sclerosis and prominent vascular disease. Autoimmunity. 6: 283–291
  • Katsumoto, T. R., M. L. Whitfield, and M. K. Connolly. 2011. The pathogenesis of systemic sclerosis. Annu. Rev. Pathol. 6: 509–537
  • Varga, J., and D. Abraham. 2007. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J. Clin. Investig. 117: 557–567
  • Dumoitier, N., S. Lofek, and L. Mouthon. 2014. Pathophysiology of systemic sclerosis: state of the art in 2014. Presse. Med. 43: e267–e278
  • van Bon, L., M. Cossu, and T. R. Radstake. 2011. An update on an immune system that goes awry in systemic sclerosis. Curr. Opin. Rheumatol. 23: 505–510
  • Wick, G., C. Grundtman, C. Mayerl, et al 2013. The immunology of fibrosis. Annu. Rev. Immunol. 31: 107–135
  • Pattanaik, D., M. Brown, B. C. Postlethwaite, and A. E. Postlethwaite. 2015. Pathogenesis of systemic sclerosis. Front. Immunol. 6: 272
  • Koenig, M., F. Joyal, M. J. Fritzler, et al 2008. Autoantibodies and microvascular damage are independent predictive factors for the progression of Raynaud's phenomenon to systemic sclerosis: a twenty-year prospective study of 586 patients, with validation of proposed criteria for early systemic sclerosis. Arthritis Rheum. 58: 3902–3912
  • Domsic, R. T. 2014. Scleroderma: the role of serum autoantibodies. In Defining Specific Clinical Phenotypes and Organ System Involvement. Curr. Opin. Rheumatol. 26: 646–652
  • Fava, A., R. Cimbro, F. M. Wigley, et al 2016. Frequency of circulating topoisomerase-I-specific CD4 T cells predicts presence and progression of interstitial lung disease in scleroderma. Arthritis Res. Ther. 18: 99
  • Bhattacharyya, S., J. Wei, and J. Varga. 2012. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat. Rev. Rheumatol. 8: 42–54
  • Kahari, V. M., M. Sandberg, H. Kalimo, et al 1988. Identification of fibroblasts responsible for increased collagen production in localized scleroderma by in situ hybridization. J. Investig. Dermatol. 90: 664–670
  • Hugle, T., K. White, and J. M. van Laar. 2012. Cell-to-cell contact of activated mast cells with fibroblasts and lymphocytes in systemic sclerosis. Ann. Rheum. Dis. 71: 1582
  • Lu, T. T. 2011. Dendritic cells: novel players in fibrosis and scleroderma. Curr. Rheumatol. Rep. 14: 30–38
  • Marchal-Somme, J., Y. Uzunhan, S. Marchand-Adam, et al 2006. Cutting edge: nonproliferating mature immune cells form a novel type of organized lymphoid structure in idiopathic pulmonary fibrosis. J. Immunol. 176: 5735–5739
  • Bantsimba-Malanda, C., J. Marchal-Somme, D. Goven, et al 2010. A role for dendritic cells in bleomycin-induced pulmonary fibrosis in mice?. Am. J. Respir. Crit. Care Med. 182: 385–395
  • Chung, M. P., M. M. Monick, N. Y. Hamzeh, et al 2003. Role of repeated lung injury and genetic background in bleomycin-induced fibrosis. Am. J. Respir. Cell Mol. Biol. 29: 375–380
  • Degryse, A. L., and W. E. Lawson. 2011. Progress toward improving animal models for idiopathic pulmonary fibrosis. Am. J. Med. Sci. 341: 444–449
  • Lee, R., C. Reese, M. Bonner, et al 2014. Bleomycin delivery by osmotic minipump: similarity to human scleroderma interstitial lung disease. Am J. Physiol. Lung Cell. Mol. Physiol. 306: L736–L748
  • Servettaz, A., C. Goulvestre, N. Kavian, et al 2009. Selective oxidation of DNA topoisomerase 1 induces systemic sclerosis in the mouse. J. Immunol. 182: 5855–5864
  • Beyer, C., G. Schett, O. Distler, and J. H. Distler. 2010. Animal models of systemic sclerosis: prospects and limitations. Arthritis Rheum. 62: 2831–2844
  • Szapiel, S. V., J. D. Fulmer, G. W. Hunninghake, et al 1981. Hereditary emphysema in the tight-skin (Tsk/+) mouse. Am. Rev. Respir. Dis. 123: 680–685
  • Manetti, M., I. Rosa, A. F. Milia, et al 2014. Inactivation of urokinase-type plasminogen activator receptor (uPAR) gene induces dermal and pulmonary fibrosis and peripheral microvasculopathy in mice: a new model of experimental scleroderma? Ann. Rheum. Dis. 73: 1700–1709
  • Yoshizaki, A., K. Yanaba, A. Ogawa, et al 2011. Immunization with DNA topoisomerase I and Freund's complete adjuvant induces skin and lung fibrosis and autoimmunity via interleukin-6 signaling. Arthritis Rheum. 63: 3575–3585
  • Hu, P. Q., A. A. Hurwitz, and J. J. Oppenheim. 2007. Immunization with DNA topoisomerase I induces autoimmune responses but not scleroderma-like pathologies in mice. J. Rheumatol. 34: 2243–2252
  • Weir, C. R., K. Nicolson, and B. T. Backstrom. 2002. Experimental autoimmune encephalomyelitis induction in naive mice by dendritic cells presenting a self-peptide. Immunol. Cell Biol. 80: 14–20
  • Eriksson, U., R. Ricci, L. Hunziker, et al 2003. Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat. Med. 9: 1484–1490
  • Fortin, G., M. Raymond, V. Q. Van, et al 2009. A role for CD47 in the development of experimental colitis mediated by SIRPalpha + CD103- dendritic cells. J. Exp. Med. 206: 1995–2011
  • Tang, H., W. Cao, S. P. Kasturi, et al 2010. The T helper type 2 response to cysteine proteases requires dendritic cell–basophil cooperation via ROS-mediated signaling. Nat. Immunol. 11: 608–617
  • Raymond, M., V. Q. Van, K. Wakahara, et al 2011. Lung dendritic cells induce T(H)17 cells that produce T(H)2 cytokines, express GATA-3, and promote airway inflammation. J. Allergy Clin. Immunol. 128: 192201.e196
  • Veeraraghavan, S., E. A. Renzoni, H. Jeal, et al 2004. Mapping of the immunodominant T cell epitopes of the protein topoisomerase I. Ann. Rheum. Dis. 63: 982–987
  • Oriss, T. B., P. Q. Hu, and T. M. Wright. 2001. Distinct autoreactive T cell responses to native and fragmented DNA topoisomerase I: influence of APC type and IL-2. J. Immunol. 166: 5456–5463
  • Simon, D., T. Czompoly, T. Berki, et al 2009. Naturally occurring and disease-associated auto-antibodies against topoisomerase I: a fine epitope mapping study in systemic sclerosis and systemic lupus erythematosus. Int. Immunol. 21: 415–422
  • Muryoi, T., K. N. Kasturi, M. J. Kafina, et al 1992. Antitopoisomerase I monoclonal autoantibodies from scleroderma patients and tight skin mouse interact with similar epitopes. J. Exp. Med. 175: 1103–1109
  • Koiwai, O., Y. Yasui, Y. Sakai, et al 1993. Cloning of the mouse cDNA encoding DNA topoisomerase I and chromosomal location of the gene. Gene 125: 211–216
  • van Rijt, L. S., N. Vos, M. Willart, et al 2011. Persistent activation of dendritic cells after resolution of allergic airway inflammation breaks tolerance to inhaled allergens in mice. Am. J. Respir. Crit. Care Med. 184: 303–311
  • Sato, S., M. Fujimoto, M. Hasegawa, and K. Takehara. 2004. Altered blood B lymphocyte homeostasis in systemic sclerosis: expanded naive B cells and diminished but activated memory B cells. Arthritis Rheum. 50: 1918–1927
  • Georgiev, M., L. M. Agle, J. L. Chu, et al 2005. Mature dendritic cells readily break tolerance in normal mice but do not lead to disease expression. Arthritis Rheum. 52: 225–238
  • Lakos, G., S. Takagawa, and J. Varga. 2004. Animal Models of Scleroderma. Humana Press Inc., Totowa, NJ
  • Desmouliere, A., A. Geinoz, F. Gabbiani, and G. Gabbiani. 1993. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol. 122: 103–111
  • Bhattacharyya, S., K. Kelley, D. S. Melichian, et al 2013. Toll-like receptor 4 signaling augments transforming growth factor-beta responses: a novel mechanism for maintaining and amplifying fibrosis in scleroderma. Am. J. Pathol. 182: 192–205
  • van Bon, L., A. J. Affandi, J. Broen, et al 2014. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N. Engl. J. Med. 370: 433–443
  • Gabrielli, A., E. V. Avvedimento, and T. Krieg. 2009. Scleroderma. N. Engl. J. Med. 360: 1989–2003
  • Henault, J., G. Robitaille, J. L. Senecal, and Y. Raymond. 2006. DNA topoisomerase I binding to fibroblasts induces monocyte adhesion and activation in the presence of anti-topoisomerase I autoantibodies from systemic sclerosis patients. Arthritis Rheum. 54: 963–973
  • Girstun, A., B. Kowalska-Loth, A. Czubaty, et al 2008. Fragment responsible for translocation in the N-terminal domain of human topoisomerase I. Biochem. Biophys. Res. Commun. 366: 250–257
  • Chen, M., A. Dittmann, A. Kuhn, et al 2005. Recruitment of topoisomerase I (Scl-70) to nucleoplasmic proteasomes in response to xenobiotics suggests a role for altered antigen processing in scleroderma. Arthritis Rheum. 52: 877–884
  • Kowal-Bielecka, O., K. Kowal, A. Lewszuk, et al 2005. Beta thromboglobulin and platelet factor 4 in bronchoalveolar lavage fluid of patients with systemic sclerosis. Ann. Rheum. Dis. 64: 484–486
  • McCormick, L. L., Y. Zhang, E. Tootell, and A. C. Gilliam. 1999. Anti-TGF-beta treatment prevents skin and lung fibrosis in murine sclerodermatous graft-versus-host disease: a model for human scleroderma. J. Immunol. 163: 5693–5699
  • Phan, S. H., and S. L. Kunkel. 1992. Lung cytokine production in bleomycin-induced pulmonary fibrosis. Exp. Lung Res. 18: 29–43
  • Eferl, R., P. Hasselblatt, M. Rath, et al 2008. Development of pulmonary fibrosis through a pathway involving the transcription factor Fra-2/AP-1. Proc. Natl. Acad. Sci. U. S. A. 105: 10525–10530
  • Rice, L. M., C. M. Padilla, S. R. McLaughlin, et al 2015. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J. Clin. Investig. 125: 2795–2807
  • Sargent, J. L., A. Milano, S. Bhattacharyya, et al 2010. A TGFbeta-responsive gene signature is associated with a subset of diffuse scleroderma with increased disease severity. J. Investig. Dermatol. 130: 694–705
  • Valentini, G., A. Baroni, K. Esposito, et al 2001. Peripheral blood T lymphocytes from systemic sclerosis patients show both Th1 and Th2 activation. J. Clin. Immunol. 21: 210–217
  • Yang, X., J. Yang, X. Xing, et al 2014. Increased frequency of Th17 cells in systemic sclerosis is related to disease activity and collagen overproduction. Arthritis Res. Ther. 16: R4
  • Brembilla, N. C., and C. Chizzolini. 2012. T cell abnormalities in systemic sclerosis with a focus on Th17 cells. Eur. Cytokine Network 23: 128–139
  • Shi, G., D. J. Field, K. A. Ko, et al 2014. Platelet factor 4 limits Th17 differentiation and cardiac allograft rejection. J. Clin. Investig. 124: 543–552
  • Kool, M., T. Soullie, M. van Nimwegen, et al 2008. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 205: 869–882
  • Del Galdo, F., and M. Matucci-Cerinic. 2014. The search for the perfect animal model discloses the importance of biological targets for the treatment of systemic sclerosis (editorial). Ann. Rheum. Dis. 73: 635–636

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.