730
Views
68
CrossRef citations to date
0
Altmetric
Review Article

Clonally expanded cytotoxic CD4+ T cells and the pathogenesis of IgG4-related disease

, &
Pages 19-24 | Received 15 Aug 2016, Accepted 04 Jan 2017, Published online: 06 Feb 2017

References

  • Stone, J. H., Y. Zen, and V. Deshpande. 2012. IgG4-related disease. N. Engl. J. Med. 366: 539–551
  • Hamano, H., S. Kawa, A. Horiuchi, et al. 2001. High serum IgG4 concentrations in patients with sclerosing pancreatitis. N. Engl. J. Med. 344: 732–738
  • Kamisawa, T., N. Egawa, and H. Nakajima. 2003. Autoimmune pancreatitis is a systemic autoimmune disease. Am. J. Gastroenterol. 98: 2811–2812
  • Kamisawa, T., N. Funata, Y. Hayashi, et al. 2003. A new clinicopathological entity of IgG4-related autoimmune disease. J. Gastroenterol. 38: 982–984
  • Stone, J. H., A. Khosroshahi, V. Deshpande, et al. 2012. Recommendations for the nomenclature of IgG4-related disease and its individual organ system manifestations. Arthr. Rheum. 64: 3061–3067
  • Mahajan, V. S., H. Mattoo, V. Deshpande, et al. 2014. IgG4-related disease. Annu. Rev. Pathol. 9: 315–347
  • Kamisawa, T., Y. Zen, S. Pillai, and J. H. Stone. 2015. IgG4-related disease. Lancet. 385: 1460–1471
  • Khosroshahi, A., and J. H. Stone. 2011. A clinical overview of IgG4-related systemic disease. Curr. Opin. Rheumatol. 23: 57–66
  • van der Neut Kolfschoten, M., J. Schuurman, M. Losen, et al. 2007. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science. 317: 1554–1557
  • Shiokawa, M., Y. Kodama, K. Kuriyama, et al. 2016. Pathogenicity of IgG in patients with IgG4-related disease. Gut. 65: 1322–1332
  • Ruiter, B., E. F. Knol, R. J. van Neerven, et al. 2007. Maintenance of tolerance to cow’s milk in atopic individuals is characterized by high levels of specific immunoglobulin G4. Clin. Exp. Allergy. 37: 1103–1110
  • Savilahti, E. M., V. Rantanen, J. S. Lin, et al. 2010. Early recovery from cow’s milk allergy is associated with decreasing IgE and increasing IgG4 binding to cow’s milk epitopes. J. Allergy. Clin. Immunol. 125: 1315–1321.e1319
  • Jones, S. M., L. Pons, J. L. Roberts, et al. 2009. Clinical efficacy and immune regulation with peanut oral immunotherapy. J. Allergy. Clin. Immunol. 124: 292–300. 300 e291-297
  • Anagnostou, K., S. Islam, Y. King, et al. 2014. Assessing the efficacy of oral immunotherapy for the desensitisation of peanut allergy in children (STOP II): a phase 2 randomised controlled trial. Lancet. 383: 1297–1304
  • Durham, S. R., S. M. Walker, E. M. Varga, et al. 1999. Long-term clinical efficacy of grass-pollen immunotherapy. N. Engl. J. Med. 341: 468–475
  • James, L. K., M. H. Shamji, S. M. Walker, et al. 2011. Long-term tolerance after allergen immunotherapy is accompanied by selective persistence of blocking antibodies. J. Allergy. Clin. Immunol. 127: 509–516. e501–e505
  • Levy, D. A., L. M. Lichtenstein, E. O. Goldstein, and K. Ishizaka. 1971. Immunologic and cellular changes accompanying the therapy of pollen allergy. J. Clin. Invest. 50: 360–369
  • Vinuesa, C. G., S. G. Tangye, B. Moser, and C. R. Mackay. 2005. Follicular B helper T cells in antibody responses and autoimmunity. Nat. Rev. Immunol. 5: 853–865
  • King, C., S. G. Tangye, and C. R. Mackay. 2008. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 26: 741–766
  • Crotty, S. 2011. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29: 621–663
  • Morita, R., N. Schmitt, S. E. Bentebibel, et al. 2011. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 34: 108–121
  • Ueno, H., J. Banchereau, and C. G. Vinuesa. 2015. Pathophysiology of T follicular helper cells in humans and mice. Nat. Immunol. 16: 142–152
  • Francis, J. N., L. K. James, G. Paraskevopoulos, et al. 2008. Grass pollen immunotherapy: IL-10 induction and suppression of late responses precedes IgG4 inhibitory antibody activity. J. Allergy. Clin. Immunol. 121: 1120–1125. e1122
  • Akiyama, M., H. Yasuoka, K. Yamaoka, et al. 2016. Enhanced IgG4 production by follicular helper 2 T cells and the involvement of follicular helper 1 T cells in the pathogenesis of IgG4-related disease. Arthr. Res. Ther. 18: 167
  • Mattoo, H., M. V. Della-Torre, E. Sekigami, et al. 2014. De novo oligoclonal expansions of circulating plasmablasts in active and relapsing IgG4-related disease. J. Allergy. Clin. Immunol. 134: 679–687
  • Wallace, Z. S., H. Mattoo, M. Carruthers, et al. 2015. Plasmablasts as a biomarker for IgG4-related disease, independent of serum IgG4 concentrations. Ann. Rheum. Dis. 74: 190–195
  • Khosroshahi, A., D. B. Bloch, V. Deshpande, and J. H. Stone. 2010. Rituximab therapy leads to rapid decline of serum IgG4 levels and prompt clinical improvement in IgG4-related systemic disease. Arthr. Rheum. 62: 1755–1762
  • Pillai, S., H. Mattoo, and A. Cariappa. 2011. B cells and autoimmunity. Curr. Opin. Immunol. 23: 721–731
  • Crawford, A., M. Macleod, T. Schumacher, et al. 2006. Primary T cell expansion and differentiation in vivo requires antigen presentation by B cells. J. Immunol. 176: 3498–3506
  • Whitmire, J. K., M. S. Asano, S. M. Kaech, et al. 2009. Requirement of B cells for generating CD4+ T cell memory. J. Immunol. 182: 1868–1876
  • Zen, Y., T. Fujii, K. Harada, et al. 2007. Th2 and regulatory immune reactions are increased in immunoglobin G4-related sclerosing pancreatitis and cholangitis. Hepatology. 45: 1538–1546
  • Tanaka, A., M. Moriyama, H. Nakashima, et al. 2012. Th2 and regulatory immune reactions contribute to IgG4 production and the initiation of Mikulicz disease. Arthr. Rheum. 64: 254–263
  • Zen, Y., and Y. Nakanuma. 2011. Pathogenesis of IgG4-related disease. Curr. Opin. Rheumatol. 23: 114–118
  • Mattoo, H., E. Della-Torre, V. S. Mahajan, et al. 2014. Circulating Th2 memory cells in IgG4-related disease are restricted to a defined subset of subjects with atopy. Allergy. 69: 399–402
  • Della Torre, E., H. Mattoo, V. S. Mahajan, et al. 2014. Prevalence of atopy, eosinophilia, and IgE elevation in IgG4-related disease. Allergy. 69: 269–272
  • Mattoo, H., V. S. Mahajan, T. Maehara, et al. 2016. Clonal expansion of CD4+ cytotoxic T lymphocytes in patients with IgG4-related disease. J. Allergy. Clin. Immunol. 138: 825–838
  • Maehara, T., H. Mattoo, M. Ohta, et al. 2017. Lesional CD4+ IFN-gamma + cytotoxic T lymphocytes in IgG4-related dacryoadenitis and sialoadenitis. Ann. Rheum. Dis. 76: 377–385
  • Wilkinson, T. M., C. K. Li, C. S. Chui, et al. 2012. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 18: 274–280
  • Casazza, J. P., M. R. Betts, D. A. Price, et al. 2006. Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation. J. Exp. Med. 203: 2865–2877
  • Soghoian, D. Z., H. Jessen, M. Flanders, et al. 2012. HIV-specific cytolytic CD4 T cell responses during acute HIV infection predict disease outcome. Sci. Transl. Med. 4: 123ra125
  • Hunder, N. N., H. Wallen, J. Cao, et al. 2008. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med. 358: 2698–2703
  • Johnson, S., M. Eller, J. E. Teigler, et al. 2015. Cooperativity of HIV-specific cytolytic CD4 T cells and CD8 T cells in control of HIV viremia. J. Virol. 89: 7494–7505
  • Orentas, R. J., J. E. Hildreth, E. Obah, et al. 1990. Induction of CD4+ human cytolytic T cells specific for HIV-infected cells by a gp160 subunit vaccine. Science. 248: 1234–1237
  • Appay, V. 2004. The physiological role of cytotoxic CD4(+) T-cells: the holy grail? Clin. Exp. Immunol. 138: 10–13
  • Mucida, D., M. M. Husain, S. Muroi, et al. 2013. Transcriptional reprogramming of mature CD4(+) helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 14: 281–289
  • Cheroutre, H., and Y. Huang. 2013. Crosstalk between adaptive and innate immune cells leads to high quality immune protection at the mucosal borders. Adv. Exp. Med. Biol. 785: 43–47
  • Vallejo, A. N., C. M. Weyand, and J. J. Goronzy. 2004. T-cell senescence: a culprit of immune abnormalities in chronic inflammation and persistent infection. Trends. Mol. Med. 10: 119–124
  • Monaco, C., E. Andreakos, S. Kiriakidis, et al. 2004. T-cell-mediated signalling in immune, inflammatory and angiogenic processes: the cascade of events leading to inflammatory diseases. Curr. Drug. Targ. Inflamm. Allergy. 3: 35–42
  • Gilani, S. R., L. J. Vuga, K. O. Lindell, et al. 2010. CD28 down-regulation on circulating CD4 T-cells is associated with poor prognoses of patients with idiopathic pulmonary fibrosis. PLoS. One. 5: e8959
  • Gasse, P., C. Mary, I. Guenon, et al. 2007. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J. Clin. Invest. 117: 3786–3799
  • Kolb, M., P. J. Margetts, D. C. Anthony, et al. 2001. Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J. Clin. Invest. 107: 1529–1536
  • Marrache, F., S. P. Tu, G. Bhagat, et al. 2008. Overexpression of interleukin-1beta in the murine pancreas results in chronic pancreatitis. Gastroenterology. 135: 1277–1287
  • Wagner, U., M. Pierer, S. Kaltenhauser, et al. 2003. Clonally expanded CD4 + CD28null T cells in rheumatoid arthritis use distinct combinations of T cell receptor BV and BJ elements. Eur. J. Immunol. 33: 79–84
  • Schmidt, D., J. J. Goronzy, and C. M. Weyand. 1996. CD4+ CD7− CD28− T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. J. Clin. Invest. 97: 2027–2037
  • Snyder, M. R., T. Nakajima, P. J. Leibson, et al. 2004. Stimulatory killer Ig-like receptors modulate T cell activation through DAP12-dependent and DAP12-independent mechanisms. J. Immunol. 173: 3725–3731
  • Snyder, M. R., L. O. Muegge, C. Offord, et al. 2002. Formation of the killer Ig-like receptor repertoire on CD4 + CD28null T cells. J. Immunol. 168: 3839–3846
  • Frohman, M., J. W. Francfort, and C. Cowing. 1991. T-dependent destruction of thyroid isografts exposed to IFN-gamma. J. Immunol. 146: 2227–2234
  • Chen, K., Y. Wei, G. C. Sharp, and H. Braley-Mullen. 2005. Balance of proliferation and cell death between thyrocytes and myofibroblasts regulates thyroid fibrosis in granulomatous experimental autoimmune thyroiditis (G-EAT). J. Leukoc. Biol. 77: 166–172
  • Alimi, E., S. Huang, M. P. Brazillet, and J. Charreire. 1998. Experimental autoimmune thyroiditis (EAT) in mice lacking the IFN-gamma receptor gene. Eur. J. Immunol. 28: 201–208
  • Mattoo, H., M. V. Della-Torre, E. Sekigami, et al. 2014. De novo oligoclonal expansions of circulating plasmablasts in active and relapsing IgG4-related disease. J. Allergy. Clin. Immunol. 134: 679–687
  • Barr, T. A., P. Shen, S. Brown, et al. 2012. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J. Exp. Med. 209: 1001–1010
  • Castillo-Trivino, T., D. Braithwaite, P. Bacchetti, and E. Waubant. 2013. Rituximab in relapsing and progressive forms of multiple sclerosis: a systematic review. PLoS. One. 8: e66308
  • Culver, E. L., E. Vermeulen, M. Makuch, et al. 2015. Increased IgG4 responses to multiple food and animal antigens indicate a polyclonal expansion and differentiation of pre-existing B cells in IgG4-related disease. Ann. Rheum. Dis. 74: 944–947
  • de Buy Wenniger, L. J., E. L. Culver, and U. Beuers. 2014. Exposure to occupational antigens might predispose to IgG4-related disease. Hepatology. 60: 1453–1454

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.