226
Views
11
CrossRef citations to date
0
Altmetric
Original Article

CD59 polymorphisms are associated with gene expression and different sexual susceptibility to pemphigus foliaceus

, &
Pages 377-385 | Received 18 Nov 2016, Accepted 29 Apr 2017, Published online: 23 May 2017

References

  • Rappersberger K, Roos N, Stanley JR. Immunomorphologic and biochemical identification of the pemphigus foliaceous autoantigen within desmosomes. J Investig Dermat. 1992;99:323–330.
  • Bystryn JC, Rudolph JL. Pemphigus. The Lancet. 2005;366:61–73.
  • Diaz LA, Sampaio SA, Rivitti EA, et al. Endemic pemphigus foliaceus (fogo selvagem). I. Clinical features and immunopathology. J Am Acad Dermatol. 1989;20:657–669.
  • Meyera N, Misery L. Geoepidemiologic considerations of auto-immune pemphigus. Autoimmun Rev. 2010;9:A379–A382.
  • Berkowitz P, Chua M, Liu Z, et al. Autoantibodies in the autoimmune disease pemphigus foliaceus induce blistering via p38 mitogen-activated protein kinase-dependent signaling in the skin. Am J Pathol. 2008;173:1628–1636.
  • Culton DA, Qian Y, Li N, et al. Advances in pemphigus and its endemic pemphigus foliaceus (Fogo Selvagem) phenotype: a paradigm of human autoimmunity. J Autoimmun. 2008;31:311–324.
  • Malheiros DF, Panepucci RA, Roselino AM, et al. Genome-wide gene expression profiling reveals unsuspected molecular alterations in pemphigus foliaceus. Immunology. 2014;143:381–395.
  • Abida O, Kallel-Sellami M, Joly P, et al. Anti-desmoglein 1 antibodies in healthy related and unrelated subjects and patients with pemphigus foliaceus in endemic and non-endemic areas from Tunisia. J Eur Acad Dermatol Venereol. 2009;23:1073–1078.
  • Toumi A, Abida O, Ben Ayed M, et al. Cytokine gene polymorphisms in Tunisian endemic pemphigus foliaceus: a possible role of IL-4 variants. Hum Immunol. 2013;74:658–665.
  • Aoki V, Sousa JX, Diaz LA. Pathogenesis of endemic pemphigus foliaceus. Dermatol Clin. 2011;29:413–418.
  • Piovezan BZ, Petzl-Erler ML. Both qualitative and quantitative genetic variation of MHC class II molecules may influence susceptibility to autoimmune diseases: the case of endemic pemphigus foliaceus. Hum Immunol. 2013;74:1134–1140.
  • Pereira NF, Hansen JA, Lin MT, et al. Cytokine gene polymorphisms in endemic pemphigus foliaceus: a possible role for IL6 variants. Cytokine. 2004;28:233–241.
  • Augusto DG, Lobo-Alves SC, Melo MF, et al. Activating KIR and HLA Bw4 ligands are associated to decreased susceptibility to pemphigus foliaceus, an autoimmune blistering skin disease. PLoS One. 2012;7:e39991.
  • Malheiros DF, Petzl-Erler ML. Individual and epistatic effects of genetic polymorphisms of B-cell co-stimulatory molecules on susceptibility to pemphigus foliaceus. Genes Immun. 2009;10:547–558.
  • Oliveira LC, Boldt ABW. Estudo de associação entre polimorfismos e níveis séricos do receptor 1 do complemento e o pênfigo foliáceo, Dissertação de mestrado Universidade Federal do Paraná, Curitiba; 2015.
  • Boldt ABW, Goeldner I, Messias-Reason IJT. Relevance of the lectin pathway of complement in rheumatic diseases. Adv Clin Chem. 2012;56:105–153.
  • Petersen SV, Thiel S, Jensenius JC. The mannan-binding lectin pathway of complement activation: biology and disease association. Mol Immunol. 2011;38:133–149.
  • Muller-Eberhard HJ. Molecular organization and function of the complement system. Annu Rev Biochem. 1988;57:321–347.
  • Kawana S, Diaz LA, Rivitti EA, et al. Complement fixation by Brazilian Pemphigus foliaceus autoantibodies. Clin Exp Immunol. 1988;71:464–469.
  • Kawana S, Geoghegan WD, Jordon RE, et al. Deposition of the membrane attack complex of complement in pemphigus vulgaris and pemphigus foliaceus skin. J Invest Dermatol. 1989;92:588–591.
  • Messias-Reason IJ, Nisihara RM, Mocelin V. Mannan-binding lectin and ficolin deposition in skin lesions of pemphigus. Arch Dermatol Res. 2011;303:521–525.
  • Hochsmann B, Dohna-Schwake C, Kyrieleis HA, et al. Targeted therapy with eculizumab for inherited CD59 deficiency. N Engl J Med. 2014;370:90–92.
  • Cho H. Complement regulation: physiology and disease relevance. Kor J Pediatr. 2015;58:239–244.
  • Kimberley FC, Sivasankar B, Morgan BP. Alternative roles for CD59. Mol Immunol. 2007;44:73–81.
  • Huang Y, Qiao F, Abagyan R, et al. Defining the CD59-C9 binding interaction. J Biol Chem. 2006;281:27398–27404.
  • Huang Y, Fedarovich A, Tomlinson S, et al. Crystal structure of CD59: implications for molecular recognition of the complement proteins C8 and C9 in the membrane-attack complex. Acta Crystallogr. 2007;63:714–721.
  • Alegretti AP, Mucenic T, Brenol JCT, et al. The role of CD55/CD59 complement regulatory proteins on peripheral blood cells of systemic lupus erythematosus patients. Rev Brasil Reumatol. 2009;49:276–287.
  • Clayton A, Harris CL, Court J, et al. Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59. Eur J Immunol. 2003;33:522–531.
  • Gorter A, Meri S. Immune evasion of tumor cells using membrane-bound complement regulatory proteins. Immunol Today. 1999;20:576–582.
  • Amet T, Ghabril M, Chalasani N, et al. CD59 incorporation protects hepatitis C virus against complement-mediated destruction. Hepatology. 2012;55:354–363.
  • Deckert M, Kubar J, Bernard A. CD58 and CD59 molecules exhibit potentializing effects in T cell adhesion and activation. J Immunol. 1992;148:672–677.
  • Van Den Berg CW, Cinek T, Hallett MB, et al. Exogenous glycosyl phosphatidylinositol-anchored CD59 associates with kinases in membrane clusters on U937 cells and becomes Ca(2+)-signaling competent. J Cell Biol. 1995;131:669–677.
  • Monleon I, Martinez-Lorenzo MJ, Anel A, et al. CD59 cross-linking induces secretion of APO2 ligand in overactivated human T cells. Eur J Immunol. 2000;30:1078–1087.
  • Petranka JG, Fleenor DE, Sykes K, et al. Structure of the CD59-encoding gene: further evidence of a relationship to murine lymphocyte antigen Ly-6 protein (human late complement inhibitor gene). Med Sci. 1992;89:7876–7879.
  • ENSEMBL database [Internet]. Available from: http://www.ensembl.org/Homo_sapiens/Gene/Summary?db = core;g = ENSG00000085063;r = 11:33698261-33736445
  • GTEX database [Internet]. Available from: http://www.gtexportal.org/home/gene/CD59
  • Nevo Y, Ben-Zeev B, Tabib A, et al. CD59 deficiency is associated with chronic hemolysis and childhood relapsing immune-mediated polyneuropathy. Blood. 2013;121:129–135.
  • Mevorach D. Paroxysmal nocturnal hemoglobinuria (PNH) and primary p.Cys89Tyr mutation in CD59: differences and similarities. Mol Immunol. 2015;67:51–55.
  • Acosta J, Hettinga J, Fluckiger R, et al. Molecular basis for a link between complement and the vascular complications of diabetes. Proc Natl Acad Sci. 2000;97:5450–5455.
  • Kinderlerer AR, Steinberg R, Johns M, et al. Statin-induced expression of CD59 on vascular endothelium in hypoxia: a potential mechanism for the anti-inflammatory actions of statins in rheumatoid arthritis. Arthritis Res Ther. 2006;8:R130.
  • Alegretti AP, Mucenic T, Merzoni CJ, et al. Expression of CD55 and CD59 on peripheral blood cells from systemic lupus erythematosus (SLE) patients. Cell Immunol. 2010;265:127–132.
  • Ruiz-Argüelles AA, Llorente L. The role of complement regulatory proteins (CD55 and CD59) in the pathogenesis of autoimmune hemocytopenias. Autoimmun Rev. 2007;6:155–161.
  • Kusner LL, Kaminski HJ. The role of complement in experimental autoimmune myasthenia gravis. Ann N Y Acad Sci. 2012;1274:127–132.
  • Uzawa A, Mori M, Uchida T, et al. Increased levels of CSF CD59 in neuromyelitis optica and multiple sclerosis. Clin Chim Acta. 2016;453:131–133.
  • 1000 Genomes Project [Internet]. Available from: http://www.1000genomes.org/1000-genomes-browsers
  • Livak K, Schmittgen TD. Analysis of relative gene expression data using realtime quantitative PCR and the 2–ΔΔCt method. Methods. 2001;25:402–408.
  • Braun-Prado K, Vieira Mion AL, Farah PN, et al. HLA class I polymorphism, as characterised by PCR-SSOP, in a Brazilian exogamic population. Tissue Antigens. 2000;56:417.
  • Probst CM, Bompeixe EP, Pereira NF, et al. HLA polymorphisms and evaluation of European, African, and Amerindian contribution to the white and mulatto populations from Parana, Brazil. Hum Biol. 2000;72:597–617.
  • Messias IT, Santamaria J, Ragiotto R, et al. Complement activation in Brazilian pemphigus foliaceus. Clin Exp Dermatol. 1989;14:51–55.
  • Messias IT, Von Kuster LC, Santamaria J, et al. Complement and antibody deposition in Brazilian pemphigus foliaceus and correlation of disease activity with circulating antibodies. Arch Dermatol. 1988;124:1664–1668.
  • Bastuji-Garin S, Souissi R, Blum L, et al. Comparative epidemiology of pemphigus in Tunisia and France: unusual incidence of pemphigus foliaceus in young Tunisian women. J Invest Dermatol. 1996;104:302–305.
  • Abida O, Kallel-Sellami M, Joly P, et al. Anti-desmoglein 1 antibodies in healthy related and unrelated subjects and patients with pemphigus foliaceus in endemic and non-endemic areas from Tunisia. J Eur Acad Dermatol Venereol. 2009;23:1073–1078.
  • Hinrichs AS, Raney BJ, Speir ML, et al. UCSC data integrator and variant annotation integrator. Bioinformatics. 2016;32:1430–1432.
  • UCSC Genome Browser [Internet]. Available from: https://genome.ucsc.edu/cgi-bin/hgTracks?db = hg19&lastVirtModeType = default&lastVirtModeExtraState = &virtModeType = default&virtMode = 0&nonVirtPosition = &position = chr11%3A33746186-33746686&hgsid = 510382285_nBoMez8UQE92pCjneEJysEM8pTEY
  • Toumi A, Chaabouni K, Abida O, et al. Elevated prolactin levels in patients with pemphigus foliaceus. J Clin Dermatol Ther. 2016;3:017.
  • Tanriverdi F, Silveira LF, Maccoll GS, et al. The hypothalamic-pituitary-gonadal axis: immune function and autoimmunity. J Endocrinol. 2003;176:293–304.
  • Carlsten H, Holmdahl R, Tarkowski A, et al. Oestradiol- and testosterone-mediated effects on the immune system in normal and autoimmune mice are genetically linked and inherited as dominant traits. Immunology. 1989;68:209–214.
  • Ratnoff WD, Brockman WW, Hasty LA. Immunohistochemical localization of C9 neoantigen and the terminal complement inhibitory protein CD59 in human endometrium. Am J Reprod Immunol. 1995;34:72–79.
  • Marana RRNF, Ferriani RA, Soares SG, et al. Expression of complement system regulatory molecules in the endometrium of normal ovulatory and hyperstimulated women correlate with menstrual cycle phase. Fertil Steril. 2006;86:758–761.
  • Morrow EH. The evolution of sex differences in disease. Biol Sex Differ. 2015;6:5.
  • Waitumbi JN, Donvito B, Kisserli A, et al. Age-related changes in red blood cell complement regulatory proteins and susceptibility to severe malaria. J Infect Dis. 2004;190:1183–1191.
  • Arora M, Arora R, Tiwari SC, et al. Expression of complement regulatory proteins in diffuse proliferative glomerulonephritis. Lupus. 2000;9:127–131.
  • Deckert M, Ticchioni M, Mari B, et al. The glycosylphosphatidylinositol-anchored CD59 protein stimulates both T cell receptor zeta/ZAP-70-dependent and -independent signaling pathways in T cells. Eur J Immunol. 1995;25:1815–1822.
  • Korty PE, Brando C, Shevach EM. CD59 functions as a signal-transducing molecule for human T cell activation. J Immunol. 1991;146:4092–4098.
  • Lipp AM, Juhasz K, Paar C, et al. Lck mediates signal transmission from CD59 to the TCR/CD3 pathway in Jurkat T cells. PLoS One. 2014;9:e85934.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.