384
Views
13
CrossRef citations to date
0
Altmetric
Original Article

TREX1 D18N mice fail to process erythroblast DNA resulting in inflammation and dysfunctional erythropoiesis

, , , , , & show all
Pages 333-344 | Received 14 May 2018, Accepted 07 Sep 2018, Published online: 13 Nov 2018

References

  • Kim A, Fung E, Parikh SG, et al. A mouse model of anaemia of inflammation: complex pathogenesis with partial dependence on hepcidin. Blood. 2014;123:1129–1136.
  • Fraenkel PG. Critical models for the anaemia of inflammation. Blood. 2014;123:1124–1125.
  • Kavanagh D, Spitzer D, Kothari PH, et al. New roles for the major human 3′-5′ exonuclease TREX1 in human disease. Cell Cycle. 2008;7:1718–1725.
  • Fatone MC, F, Pavone G, Lauletta S, et al. Features of peripheral CD8(+)CD57(+) lymphocytes in patients with autoimmune hemolytic anaemia. Autoimmunity. 2018;51:1–9.
  • Smirnova SJ, Sidorova JV, Tsvetaeva NV, et al. Expansion of CD8+ cells in autoimmune hemolytic anaemia. Autoimmunity. 2016;49:147–154.
  • Fagiolo E, Toriani-Terenzi C. Mechanisms of immunological tolerance loss versus erythrocyte self-antigens and autoimmune hemolytic anaemia. Autoimmunity. 2003;36:199–204.
  • Kutukculer N, Aksu G. Is there an association between autoimmune hemolytic anaemia and ataxia-telangiectasia?. Autoimmunity. 2000;32:145–147.
  • Giannouli S, Voulgarelis M, Ziakas PD, et al. Anaemia in systemic lupus erythematosus: from pathophysiology to clinical assessment. Ann Rheum Dis. 2006;65:144–148.
  • Velo-Garcia A, Castro SG, Isenberg DA. The diagnosis and management of the haematologic manifestations of lupus. J Autoimmun. 2016;74:139–160.
  • Sarzi-Puttini P, Atzeni F, Iaccarino L, et al. Environment and systemic lupus erythematosus: an overview. Autoimmunity. 2005;38:465–472.
  • Krieser RJ, MacLea KS, Longnecker DS, et al. Deoxyribonuclease IIalpha is required during the phagocytic phase of apoptosis and its loss causes perinatal lethality. Cell Death Differ. 2002;9:956–962.
  • Kawane K, Fukuyama H, Kondoh G, et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science. 2001;292:1546–1549.
  • Grieves JL, Fye JM, Harvey S, et al. Exonuclease TREX1 degrades double-stranded DNA to prevent spontaneous lupus-like inflammatory disease. Proc Natl Acad Sci USA. 2015;112:5117–5122.
  • Yang YG, Lindahl T, Barnes DE. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell. 2007;131:873–886.
  • Postel EH, Zou X, Notterman DA, et al. Double knockout Nme1/Nme2 mouse model suggests a critical role for NDP kinases in erythroid development. Mol Cell Biochem. 2009;329:45–50.
  • Postel EH, Wohlman I, Zou X, et al. Targeted deletion of Nm23/nucleoside diphosphate kinase A and B reveals their requirement for definitive erythropoiesis in the mouse embryo. Dev Dyn. 2009;238:775–787.
  • Rekvig OP, Mortensen ES. Immunity and autoimmunity to dsDNA and chromatin-the role of immunogenic DNA-binding proteins and nuclease deficiencies. Autoimmunity. 2012;45:588–592.
  • Perl A. Pathogenic mechanisms in systemic lupus erythematosus. Autoimmunity. 2010;43:1–6.
  • Rodero MP, Tesser A, Bartok E, et al. Type I interferon-mediated autoinflammation due to DNase II deficiency. Nat Commun. 2017;8:2176.
  • Chowdhury D, Beresford PJ, Zhu P, et al. The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme A-mediated cell death. Mol Cell. 2006;23:133–142.
  • Fye JM, Orebaugh CD, Coffin SR, et al. Dominant mutation of the TREX1 exonuclease gene in lupus and Aicardi-Goutieres syndrome. J Biol Chem. 2011;286:32373–32382.
  • Gordon MY, Lewis JL, Marley SB. Of mice and men.and elephants. Blood. 2002;100:4679–4680.
  • Toda S, Segawa K, Nagata S. MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands. Blood. 2014;123:3963–3971.
  • Zhao B, Mei Y, Schipma MJ, et al. Nuclear condensation during mouse erythropoiesis requires caspase-3-mediated nuclear opening. Dev Cell. 2016;36:498–510.
  • Bell AJ, Satchwell TJ, Heesom KJ, et al. Protein distribution during human erythroblast enucleation in vitro. PloS One. 2013;8:e60300.
  • Astwood E, Vora A. Erythroblastic islands. Blood. 2011;117:10.
  • Hristoskova S, Holzgreve W, Hahn S, et al. The chromatin of differentiating erythroblasts is cleaved into large size fragments independent of caspase activated DNase and apoptosis inducing factor. J Cell Physiol. 2007;213:490–494.
  • Yoshida A, Urasaki Y, Waltham M, et al. Human apurinic/apyrimidinic endonuclease (Ape1) and its N-terminal truncated form (AN34) are involved in DNA fragmentation during apoptosis. J Biol Chem. 2003;278:37768–37776.
  • Lee-Kirsch MA, Chowdhury D, Harvey S, et al. A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J Mol Med. 2007;85:531–537.
  • Perrino FW, Mazur DJ, Ward H, et al. Exonucleases and the incorporation of aranucleotides into DNA. Cell Biochem Biophys. 1999;30:331–352.
  • Fye JM, Coffin SR, Orebaugh CD, et al. The Arg-62 residues of the TREX1 exonuclease act across the dimer interface contributing to catalysis in the opposing protomers. J Biol Chem. 2014;289:11556–11565.
  • Crow YJ, Hayward BE, Parmar R, et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat Genet. 2006;38:917–920.
  • Gunther C, M, Hillebrand J, Brunk MA, et al. Systemic involvement in TREX1-associated familial chilblain lupus. J Am Acad Dermatol. 2013;69:e179–e181.
  • Richards A, van den Maagdenberg AM, Jen JC, et al. C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet. 2007;39:1068–1070.
  • Plander M, Kalman B. Rare autoimmune disorders with Mendelian inheritance. Autoimmunity. 2016;49:285–297.
  • Lee-Kirsch MA, Gong M, Chowdhury D, et al. Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet. 2007;39:1065–1067.
  • Namjou B, Kothari PH, Kelly JA, et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 2011;12:270–279.
  • Perl A. Systems biology of lupus: mapping the impact of genomic and environmental factors on gene expression signatures, cellular signaling, metabolic pathways, hormonal and cytokine imbalance, and selecting targets for treatment. Autoimmunity. 2010;43:32–47.
  • Tungler V, Silver RM, Walkenhorst H, et al. Inherited or de novo mutation affecting aspartate 18 of TREX1 results in either familial chilblain lupus or Aicardi-Goutières syndrome. Br J Dermatol. 2012;167:212–214.
  • Haaxma CA, Crow YJ, van Steensel MA, et al. A de novo p.Asp18Asn mutation in TREX1 in a patient with Aicardi-Goutières syndrome. Am J Med Genet A. 2010;152A:2612–2617.
  • Stetson DB, Ko JS, Heidmann T, et al. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell. 2008;134:587–598.
  • Rice GI, Rodero MP, Crow YJ. Human disease phenotypes associated with mutations in TREX1. J Clin Immunol. 2015;35:235–243.
  • Hasan M, Fermaintt CS, Gao N, et al. Cytosolic nuclease TREX1 regulates oligosaccharyltransferase activity independent of nuclease activity to suppress immune activation. Immunity. 2015;43:463–474.
  • Gray EE, Treuting PM, Woodward JJ, et al. Cutting edge: cGAS is required for lethal autoimmune disease in the trex1-deficient mouse model of Aicardi-Goutieres syndrome. JI. 2015;195:1939–1943.
  • Gao D, Li T, Li XD, et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci USA. 2015;112:E5699–E5705.
  • Ahn J, Gutman D, Saijo S, et al. STING manifests self DNA-dependent inflammatory disease. Proc Natl Acad Sci USA. 2012;109:19386–19391.
  • Hepburn AL, Narat S, Mason JC. The management of peripheral blood cytopenias in systemic lupus erythematosus. Rheumatology. 2010;49:2243–2254.
  • Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucl Acids Res. 2009;37:1–13.
  • Rego SL, Zakhem E, Orlando G, et al. Bioengineered human pyloric sphincters using autologous smooth muscle and neural progenitor cells. Tissue Eng Part A. 2016;22:151–160.
  • Welch JJ, Watts JA, Vakoc CR, et al. Global regulation of erythroid gene expression by transcription factor GATA-1. Blood. 2004;104:3136–3147.
  • Saito T, Tojo K, Morimoto A, et al. Normocytic normochromic anaemia due to automatic neuropathy in type 2 diabetic patients without severe nephropathy: a possible role of microangiopathy. Diabet Res Clin Pract. 2005;70:239–247.
  • Tanimura N, Miller E, Igarashi K, et al. Mechanism governing heme synthesis reveals a GATA factor/heme circuit that controls differentiation. EMBO Rep. 2016;17:249–265.
  • Ellyard JI, Jerjen R, Martin JL, et al. Identification of a pathogenic variant in TREX1 in early-onset cerebral systemic lupus erythematosus by Whole-exome sequencing. Arthritis Rheumatol. 2014;66:3382–3386.
  • Gardenghi S, Renaud TM, Meloni A, et al. Distinct roles for hepcidin and interleukin-6 in the recovery from anaemia in mice injected with heat-killed Brucella abortus. Blood. 2014;123:1137–1145.
  • Li X, Shu C, Yi G, et al. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity. 2013;39:1019–1031.
  • Alvarez-Dominguez JR, Zhang X, Hu W. Widespread and dynamic translational control of red blood cell development. Blood. 2017;129:619–629.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.