531
Views
15
CrossRef citations to date
0
Altmetric
Review Articles

Human antimicrobial peptides in autoimmunity

ORCID Icon, , , &
Pages 137-147 | Received 03 Oct 2019, Accepted 01 Jan 2020, Published online: 08 Jan 2020

References

  • Kaplan MJ. Role of neutrophils in systemic autoimmune diseases. Arthritis Res Ther. 2013;15(5):219.
  • Németh T, Mócsai A. The role of neutrophils in autoimmune diseases. Immunol Lett. 2012;143(1):9–19.
  • Ganguly D, Haak S, Sisirak V, et al. The role of dendritic cells in autoimmunity. Nat Rev Immunol. 2013;13(8):566–577.
  • Bayry J, Thirion M, Delignat S, et al. Dendritic cells and autoimmunity. Autoimmun Rev. 2004;3(3):183–187.
  • Vignesh P, Rawat A, Sharma M, et al. Complement in autoimmune diseases. Clin Chim Acta. 2017;465:123–130.
  • Maślińska M, de Luca F, Sharif K. Tuftsin-phosphorylcholine treatment of autoimmune diseases – a benefit and a message from helminths? Rheumatology. 2017;55(6):267–268.
  • Bashi T, Shovman O, Fridkin M, et al. Novel therapeutic compound tuftsin–phosphorylcholine attenuates collagen‐induced arthritis. Clin Exp Immunol. 2016;184(1):19–28.
  • Zeya HI, Spitznagel JK. Antimicrobial specificity of leukocyte lysosomal cationic proteins. Science. 1966;154(3752):1049–1051.
  • Zeya HI, Spitznagel JK. Cationic proteins of polymorphonuclear leukocyte lysosomes. II. Composition, properties, and mechanism of antibacterial action. J Bacteriol. 1966;91(2):755–762.
  • Zeya HI, Spitznagel JK. Arginine-rich proteins of polymorphonuclear leukocyte lysosomes. Antimicrobial specificity and biochemical heterogeneity. J Exp Med. 1968;127(5):927–941.
  • Ganz T, Selsted ME, Szklarek D, et al. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 1985;76(4):1427–1435.
  • Selsted ME, Tang YQ, Morris WL, et al. Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem. 1993;268(9):6641–6648.
  • Harwig SS, Swiderek KM, Kokryakov VN, et al. Gallinacins: cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett. 1994;342(3):281–285.
  • Bals R, Goldman MJ, Wilson JM. Mouse beta-defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. Infect Immun. 1998;66(3):1225–1232.
  • Daher KA, Lehrer RI, Ganz T, et al. Isolation and characterization of human defensin cDNA clones. Proc Natl Acad Sci USA. 1988;85(19):7327–7331.
  • Jones DE, Bevins CL. Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem. 1992;267(32):23216–23225.
  • Pazgier M, Hoover DM, Yang D, et al. Human β-defensins. Cell Mol Life Sci. 2006;63(11):1294–1313.
  • Deptuła J, Tokarz-Deptuła B, Malinowska-Borysiak M, et al. Cathelicidins in human and animals. Postep Microbiol. 2019;58(1):19–28.
  • Agerberth B, Gunne H, Odeberg J, et al. FALL-37, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci USA. 1995;92(1):195–199.
  • Larrick JW, Hirata M, Balint RF, et al. Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun. 1995;63:1291–1297.
  • Cowland JB, Johnsen AH, Borregaard N. hCAP-18, a cathelin/probactenecin-like protein of human neutrophil specific granules. FEBS Lett. 1995;368(1):173–176.
  • Dürr UH, Sudheendra US, Ramamoorthy A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta. 2006;1758(9):1408–1425.
  • Golec M, Reichel C, Lemieszek M, et al. Cathelicidin LL-37 in bronchoalveolar lavage and epithelial lining fluids from healthy individuals and sarcoidosis patients. J Biol Regul Homeost Agents. 2014;28(1):73–79.
  • Sørensen OE, Follin P, Johnsen AH, et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood. 2001;97(12):3951–3959.
  • Kuroda K, Okumura K, Isogai H, et al. The human cathelicidin antimicrobial peptide LL-37 and mimics are potential anticancer drugs. Front Oncol. 2015;5:144.
  • Zaiou M, Gallo RL. Cathelicidins, essential gene-encoded mammalian antibiotics. J Mol Med. 2002;80(9):549–561.
  • Vandamme D, Landuyt B, Luyten W, et al. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol. 2012;280(1):22–35.
  • Porter EM, Dam E, Valore EV, et al. Broad-spectrum antimicrobial activity of human intestinal defensin 5. Infect Immun. 1997;65(6):2396–2401.
  • Schroeder BO, Ehmann D, Precht JC, et al. Paneth cell α-defensin 6 (HD-6) is an antimicrobial peptide. Mucosal Immunol. 2015;8(3):661–671.
  • Tripathi S, Wang G, White M, et al. Antiviral activity of the human cathelicidin, LL-37, and derived peptides on seasonal and pandemic influenza A viruses. PLoS One. 2015;10(4):e0124706.
  • Daher KA, Selsted ME, Lehrer RI. Direct inactivation of viruses by human granulocyte defensins. J Virol. 1986;60(3):1068–1074.
  • Quiñones-Mateu ME, Lederman MM, Feng Z, et al. Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. AIDS. 2003;17(16):F39–F48.
  • Wong JH, Ng TB, Legowska A, et al. Antifungal action of human cathelicidin fragment (LL13–37) on Candida albicans. Peptides. 2011;32(10):1996–2002.
  • Lehrer RI, Ganz T, Szklarek D, et al. Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J Clin Invest. 1988;81(6):1829–1835.
  • McGwire BS, Olson CL, Tack BF, et al. Killing of African trypanosomes by antimicrobial peptides. J Infect Dis. 2003;188(1):146–152.
  • Wu WKK, Sung JJ, To KF, et al. The host defense peptide LL-37 activates the tumor-suppressing bone morphogenetic protein signaling via inhibition of proteasome in gastric cancer cells. J Cell Physiol. 2010;223(1):178–186.
  • Ren SX, Cheng ASL, To KF, et al. Host immune defense peptide LL-37 activates caspase-independent apoptosis and suppresses colon cancer. Cancer Res. 2012;72(24):6512–6523.
  • Han Q, Wang R, Sun C, et al. Human beta-defensin-1 suppresses tumor migration and invasion and is an independent predictor for survival of oral squamous cell carcinoma patients. PLoS One. 2014;9(3):e91867.
  • Niyonsaba F, Iwabuchi K, Someya A, et al. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology. 2002;106(1):20–26.
  • Niyonsaba F, Hirata M, Ogawa H, et al. Epithelial cell-derived antibacterial peptides human beta-defensins and cathelicidin: multifunctional activities on mast cells. CDTIA. 2003;2(3):224–231.
  • Yang D, Chertov O, Bykovskaia SN, et al. β-Defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999;286(5439):525–528.
  • Yang D, Chen Q, Schmidt AP, et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med. 2000;192(7):1069–1074.
  • Yang D, Chen Q, Chertov O, et al. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol. 2000;68(1):9–14.
  • Territo MC, Ganz T, Selsted ME, et al. Monocyte-chemotactic activity of defensins from human neutrophils. J Clin Invest. 1989;84(6):2017–2020.
  • Grigat J, Soruri A, Forssmann U, et al. Chemoattraction of macrophages, T lymphocytes, and mast cells is evolutionarily conserved within the human α-defensin family. J Immunol. 2007;179(6):3958–3965.
  • Niyonsaba F, Ogawa H, Nagaoka I. Human beta-defensin-2 functions as a chemotactic agent for tumour necrosis factor-alpha-treated human neutrophils. Immunology. 2004;111(3):273–281.
  • Tjabringa GS, Ninaber DK, Drijfhout JW, et al. Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors. Int Arch Allergy Immunol. 2006;140(2):103–112.
  • Lande R, Gregorio J, Facchinetti V, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449(7162):564–569.
  • Ganguly D, Chamilos G, Lande R, et al. Self-RNA-antimicrobial peptide complexes activate dendritic cells through TLR7 and TLR8. J Exp Med. 2009;206(9):1983–1994.
  • Scott A, Weldon S, Buchanan PJ, et al. Evaluation of the ability of LL-37 to neutralise LPS in vitro and ex vivo. PLoS One. 2011;6(10):e26525.
  • Suzuki K, Murakami T, Kuwahara-Arai K, et al. Human anti-microbial cathelicidin peptide LL-37 suppresses the LPS-induced apoptosis of endothelial cells. Int Immunol. 2011;23(3):185–193.
  • Barlow PG, Li Y, Wilkinson TS, et al. The human cationic host defense peptide LL-37 mediates contrasting effects on apoptotic pathways in different primary cells of the innate immune system. J Leukoc Biol. 2006;80(3):509–520.
  • Chamorro CI, Weber G, Grönberg A, et al. The human antimicrobial peptide LL-37 suppresses apoptosis in keratinocytes. J Invest Dermatol. 2009;129(4):937–944.
  • Horn M, Bertling A, Brodde MF, et al. Human neutrophil alpha-defensins induce formation of fibrinogen and thrombospondin-1 amyloid like structures and activate platelets via glycoprotein IIb/IIIa. J Thromb Haemost. 2012;10(4):647–661.
  • Panyutich AV, Szold O, Poon PH, et al. Identification of defensin binding to C1 complement. FEBS Lett. 1994;356(2–3):169–173.
  • Prohászka Z, Német K, Csermely P, et al. Defensins purified from human granulocytes bind C1q and activate the classical complement pathway like the transmenbrane glycoprotein gq41 of HIV-1. Mol Immunol. 1997;34:809–816.
  • Van den Berg RH, Faber-Krol MC, van Wetering S, et al. Inhibition of activation of the classical pathway of complement by human neutrophil defensins. Blood. 1998;92(10):3898–3903.
  • Suarez-Carmona M, Hubert P, Gonzalez A, et al. ΔNp63 isoform-mediated β-defensin family up-regulation is associated with (lymph) angiogenesis and poor prognosis in patients with squamous cell carcinoma. Oncotarget. 2014;5(7):1856–1868.
  • Chavakis T, Cines DB, Rhee JS, et al. Regulation of neovascularization by human neutrophil peptides (alpha-defensins): a link between inflammation and angiogenesis. Faseb J. 2004;18(11):1306–1308.
  • Oono T, Shirafuji Y, Huh W-K, et al. Effects of human neutrophil peptide-1 on the expression of interstitial collagenase and type I collagen in human dermal fibroblasts. Arch Dermatol Res. 2002;294(4):185–189.
  • Diana J, Simoni Y, Furio L, et al. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat Med. 2013;19(1):65–73.
  • Vordenbäumen S, Schneider M. Defensins: potential effectors in autoimmune rheumatic disorders. Polymers. 2011;3(3):1268–1281.
  • Kahlenberg JM, Kaplan MJ. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J Immunol. 2013;191(10):4895–4901.
  • Ballardini N, Johansson C, Lilja G, et al. Enhanced expression of the antimicrobial peptide LL-37 in lesional skin of adults with atopic eczema. Br J Dermatol. 2009;161(1):40–47.
  • Chamaillard M, Dessein R. Defensins couple dysbiosis to primary immunodeficiency in Crohn’s disease. WJG. 2011;17(5):567–571.
  • Barna BP, Culver DA, Kanchwala A, et al. Alveolar macrophage cathelicidin deficiency in severe sarcoidosis. J Innate Immun. 2012;4(5–6):569–578.
  • Hall JC, Rosen A. Type I interferons: crucial participants in disease amplification in autoimmunity. Nat Rev Rheumatol. 2010;6(1):40–49.
  • Ghannam S, Dejou C, Pedretti N, et al. CCL20 and β-defensin-2 induce arrest of human Th17 cells on inflamed endothelium in vitro under flow conditions. J Immunol. 2011;186(3):1411–1420.
  • Matusevicius D, Kivisäkk P, He B, et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler. 1999;5(2):101–104.
  • Aarvak T, Chabaud M, Miossec P, et al. IL-17 is produced by some proinflammatory Th1/Th0 cells but not by Th2 cells. J Immunol. 1999;162(3):1246–1251.
  • Albanesi C, Scarponi C, Cavani A, et al. Interleukin-17 is produced by both Th1 and Th2 lymphocytes, and modulates interferon-gamma- and interleukin-4-induced activation of human keratinocytes. J Invest Dermatol. 2000;115(1):81–87.
  • Liang SC, Tan X-Y, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203(10):2271–2279.
  • Atkinson MA, von Herrath M, Powers AC, et al. Current concepts on the pathogenesis of type 1 diabetes – considerations for attempts to prevent and reverse the disease. Dia Care. 2015;38(6):979–988.
  • Brauner H, Lüthje P, Grünler J, et al. Markers of innate immune activity in patients with type 1 and type 2 diabetes mellitus and the effect of the anti-oxidant coenzyme Q10 on inflammatory activity. Clin Exp Immunol. 2014;177(2):478–482.
  • Allen JS, Pang K, Skowera A, et al. Plasmacytoid dendritic cells are proportionally expanded at diagnosis of type 1 diabetes and enhance islet autoantigen presentation to T-cells through immune complex capture. Diabetes. 2009;58(1):138–145.
  • Sun J, Furio L, Mecheri R, et al. Pancreatic β-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity. 2015;43(2):304–317.
  • Németh BC, Várkonyi T, Somogyvári F, et al. Relevance of α-defensins (HNP1-3) and defensin β-1 in diabetes. World J Gastroenterol. 2014;20(27):9128–9137.
  • Saraheimo M, Forsblom C, Pettersson-Fernholm K, et al. Increased levels of alpha-defensin (-1, -2 and -3) in type 1 diabetic patients with nephropathy. Nephrol Dial Transplant. 2007;23(3):914–918.
  • Joshi MB, Lad A, Bharath Prasad AS, et al. High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBS Lett. 2013;587(14):2241–2246.
  • Papayannopoulos V, Zychlinsky A. NETs: a new strategy for using old weapons. Trends Immunol. 2009;30(11):513–521.
  • Smith JB, Haynes MK. Rheumatoid arthritis—a molecular understanding. Ann Intern Med. 2002;136(12):908–922.
  • Willemze A, Trouw LA, Toes RE, et al. The influence of ACPA status and characteristics on the course of RA. Nat Rev Rheumatol. 2012;8(3):144–152.
  • Baillet A, Trocmé C, Berthier S, et al. Synovial fluid proteomic fingerprint: S100A8, S100A9 and S100A12 proteins discriminate rheumatoid arthritis from other inflammatory joint diseases. Rheumatology. 2010;49(4):671–682.
  • Bokarewa MI, Jin T, Tarkowski A. Intraarticular release and accumulation of defensins and bactericidal/permeability-increasing protein in patients with rheumatoid arthritis. J Rheumatol. 2003;30(8):1719–1724.
  • Paulsen F, Pufe T, Conradi L, et al. Antimicrobial peptides are expressed and produced in healthy and inflamed human synovial membrane. J Pathol. 2002;198(3):369–377.
  • Paulsen F, Pufe T, Petersen W, et al. Expression of natural peptide antibiotics in human articular cartilage and synovial membrane. Clin Diag Lab Immunol. 2001;8(5):1021–1023.
  • Varoga D, Pufe T, Harder J, et al. Production of endogenous antibiotics in articular cartilage. Arthrit Rheum. 2004;50(11):3526–3534.
  • Smolen JS, Aletaha D, Koeller M, et al. New therapies for treatment of rheumatoid arthritis. Lancet. 2007;370(9602):1861–1874.
  • Varoga D, Paulsen FP, Kohrs S, et al. Expression and regulation of human beta-defensin-2 in osteoarthritis cartilage. J Pathol. 2006;209(2):166–173.
  • Varoga D, Pufe T, Harder J, et al. Human beta-defensin 3 mediates tissue remodeling processes in articular cartilage by increasing levels of metalloproteinases and reducing levels of their endogenous inhibitors. Arthritis Rheum. 2005;52(6):1736–1745.
  • Varoga D, Pufe T, Mentlein R, et al. Expression and regulation of antimicrobial peptides in articular joints. Ann Anat. 2005;187(5–6):499–508.
  • Matsumoto T, Kaneko T, Seto M, et al. The membrane proteinase 3 expression on neutrophils was downregulated after treatment with infliximab in patients with rheumatoid arthritis. Clin Appl Thromb Hemost. 2008;14(2):186–192.
  • Säll J, Carlsson M, Gidlöf O, et al. The antimicrobial peptide LL-37 alters human osteoblast Ca2+ handling and induces Ca2+-independent apoptosis. J Innate Immun. 2013;5(3):290–300.
  • Hoffmann MH, Bruns H, Bäckdahl L, et al. The cathelicidins LL-37 and rCRAMP are associated with pathogenic events of arthritis in humans and rats. Ann Rheum Dis. 2013;72(7):1239–1248.
  • Kaul A, Gordon C, Crow MK, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016;2(1):16039.
  • Bennett L, Palucka AK, Arce E, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med. 2003;197(6):711–723.
  • Ishii T, Onda H, Tanigawa A, et al. Isolation and expression profiling of genes upregulated in the peripheral blood cells of systemic lupus erythematosus patients. DNA Res. 2005;12(6):429–439.
  • Sthoeger ZM, Bezalel S, Chapnik N, et al. High alpha-defensin levels in patients with systemic lupus erythematosus. J Immunol. 2009;127(1):116–122.
  • Vordenbäumen S, Fischer-Betz R, Timm D, et al. Elevated levels of human beta-defensin 2 (hBD2) and human neutrophil peptides (HNP) in systemic lupus erythematosus. Lupus. 2010;19(14):1648–1653.
  • Tamiya H, Tani K, Miyata J, et al. Defensin- and cathepsin G-ANCA in systemic lupus erythematosus. Rheumatol Int. 2006;27(2):147–152.
  • Schultz H, Csernok E, Herlyn K, et al. ANCA against bactericidal/permeability-increasing protein, azurocidin, calprotectin and defensins in rheumatic and infectious diseases: Prevalence and clinical associations. Clin Exp Immunol. 2003;21:117–120.
  • Chertov O, Michiel DF, Xu L, et al. Identification of defensin-1, defensin-2 and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J Biol Chem. 1996;271(6):2935–2940.
  • Foya O, Sthoeger ZM. Defensins in systemic lupus erythematosus. Ann N Y Acad Sci. 2009;1173:365–369.
  • Lande R, Ganguly D, Facchinetti V, et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med. 2011;3(73):73ra19.
  • Gestermann N, Di Domizio J, Lande R, et al. Netting neutrophils activate autoreactive B cells in Lupus. J Immunol. 2018;200(10):3364–3371.
  • Reinholz M, Ruzicka T, Schauber J. Cathelicidin LL-37: an antimicrobial peptide with a role in inflammatory skin disease. Ann Dermatol. 2012;24(2):126–135.
  • Ong PY, Ohtake T, Brandt C, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347(15):1151–1160.
  • Lande R, Chamilos G, Ganguly D, et al. Cationic antimicrobial peptides in psoriatic skin cooperate to break innate tolerance to self-DNA. Eur J Immunol. 2015;45(1):203–213.
  • Nestle FO, Conrad C, Tun-Kyi A, et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J Exp Med. 2005;202(1):135–143.
  • Morizane S, Yamasaki K, Mühleisen B, et al. Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 ligands. J Invest Dermatol. 2012;132(1):135–143.
  • Hansel A, Gunther C, Ingwersen J, et al. Human slan (6-sulfo LacNAc)dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong TH17/TH1 T-cell responses. J Allergy Clin Immunol. 2011;127:787–794.
  • Lande R, Botti E, Jandus C, et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 2014;5(1):5621.
  • Frasca L, Palazzo R, Chimenti MS, et al. Anti-LL37 antibodies are present in psoriatic arthritis (PsA) patients: new biomarkers in PsA. Front Immunol. 2018;9:1936.
  • Yuan Y, Qiu J, Lin Z-T, et al. Identification of novel autoantibodies associated with psoriatic arthritis. Arthritis Rheumatol. 2019;71(6):941–951.
  • Kiatsurayanon C, Niyonsaba F, Chieosilapatham P, et al. Angiogenic peptide (AG)-30/5C activates human keratinocytes to produce cytokines/chemokines and to migrate and proliferate via MrgX receptors. J Dermatol Sci. 2016;83(3):190–199.
  • Takahashi T, Gallo RL. The critical and multifunctional roles of antimicrobial peptides in dermatology. Dermatol Clin. 2017;35(1):39–50.
  • Ali H. Emerging roles for MAS-related G protein-coupled receptor-X2 in host defense peptide, opioid, and neuropeptide-mediated inflammatory reactions. Adv Immunol. 2017;136:123–162.
  • Wehkamp J, Salzman NH, Porter E, et al. Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci USA. 2005;102(50):18129–18134.
  • Nuding S, Fellermann K, Wehkamp J, et al. Reduced mucosal antimicrobial activity in Crohn’s disease of the colon. Gut. 2007;56(9):1240–1247.
  • Elphick D, Liddell S, Mahida YR. Impaired luminal processing of human defensin-5 in Crohn’s disease: persistence in a complex with chymotrypsinogen and trypsin. Am J Pathol. 2008;172(3):702–713.
  • Peyrin-Biroulet L, Beisner J, Wang G, et al. Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon. Proc Natl Acad Sci USA. 2010;107(19):8772–8777.
  • Fellermann K, Stange DE, Schaeffeler E, et al. A chromosome 8 gene cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn’s disease of the colon. Am J Hum Genet. 2006;79(3):439–448.
  • Tran D-N, Wang J, Ha C, et al. Circulating cathelicidin levels correlate with mucosal disease activity in ulcerative colitis, risk of intestinal stricture in Crohn’s disease, and clinical prognosis in inflammatory bowel disease. BMC Gastroenterol. 2017;17(1):63.
  • Otte J-M, Vordenbäumen S. Role of antimicrobial peptides in inflammatory bowel disease. Polymers. 2011;3(4):2010–2017.
  • Sweiss NJ, Patterson K, Sawaqed R, et al. Rheumatologic manifestations of sarcoidosis. Semin Respir Crit Care Med. 2010;31(04):463–473.
  • Paone G, Lucantoni G, Leone A, et al. Human neutrophil peptides stimulate tumor necrosis factor-alpha release by alveolar macrophages from patients with sarcoidosis. Chest. 2009;135(2):586–587.
  • Nijnik A, Pistolic J, Wyatt A, et al. Human cathelicidin peptide LL-37 modulates the effects of IFN-gamma on APCs. J Immunol. 2009;183(9):5788–5798.
  • Yang D, Han Z, Oppenheim JJ. Alarmins and immunity. Immunol Rev. 2017;280(1):41–56.
  • Yang D, Biragyn A, Hoover DM, et al. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol. 2004;22(1):181–315.
  • Elssner A, Duncan M, Gavrilin M, et al. A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1b processing and release. J Immunol. 2004;172(8):4987–4994.
  • Chen Q, Jin Y, Zhang K, et al. Alarmin HNP-1 promotes pyroptosis and IL-1beta release through different roles of NLRP3 inflammasome via P2X7 in LPS-primed macrophages. Innate Immun. 2014;20(3):290–300.
  • Biragyn A, Surenhu M, Yang D, et al. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with non-immunogenic tumor antigens. J Immunol. 2001;167(11):6644–6653.
  • Shoenfeld Y, Agmon-Levin N. ASIA’ - Autoimmune/inflammatory syndrome induced by adjuvants. J Autoimmun. 2011;36(1):4–8.
  • Chen M, Daha MR, Kallenberg CG. The complement system in systemic autoimmune disease. J Autoimmun. 2010;34:276–286.
  • Ballanti E, Perricone C, Greco E, et al. Complement and autoimmunity. Immunol Res. 2013;56(2–3):477–491.
  • Merle NS, Church SE, Fremeaux-Bacchi V, et al. Complement system part I - molecular mechanisms of activation and regulation. Front Immunol. 2015;6:262.
  • Hancock REW, Haney EF, Gill EE. The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol. 2016;16(5):321–334.
  • Groeneveld TWL, Ramwadhdoebe TH, Trouw LA, et al. Human neutrophil peptide-1 inhibits both the classical and the lectin pathway of complement activation. Mol Immunol. 2007;44(14):3608–3614.
  • Bhat S, Song Y-H, Lawyer C, et al. Modulation of the complement system by human beta-defensin 2. J Burns Wounds. 2007;5:e10.
  • Gaboriaud C, Ling WL, Thielens NM, et al. Deciphering the fine details of C1 assembly and activation mechanisms: “mission impossible”? Front Immunol. 2014;6:565.
  • Lu J, Kishore U. C1 complex: an adaptable proteolytic module for complement and non-complement functions. Front Immunol. 2017;8:592.
  • Lintner KE, Wu YL, Yang Y, et al. Early components of the complement classical activation pathway in human systemic autoimmune diseases. Front Immunol. 2016;7:36.
  • Chen J, Xu XM, Underhill CB, et al. Tachyplesin activates the classic complement pathway to kill tumor cells. Cancer Res. 2005;65(11):4614–4622.
  • Berlov MN, Umnyakova ES, Leonova TS, et al. Interaction of arenicin-1 with C1q protein. Russ J Bioorg Chem. 2015;41(6):597–601.
  • Ovchinnikova TV, Aleshina GM, Balandin SV, et al. Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaeta Arenicola marina. FEBS Lett. 2004;577(1–2):209–214.
  • Umnyakova ES, Gorbunov NP, Zhakhov AV, et al. Modulation of human complement system by antimicrobial peptide arenicin-1 from Arenicola marina. Marine Drugs. 2018;16(12):480.
  • Ribon M, Seninet S, Mussard J, et al. Neutrophil extracellular traps exert both pro- and anti-inflammatory actions in rheumatoid arthritis that are modulated by C1q and LL-37. J Autoimmun. 2019;98:122–131.
  • Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535.
  • Leffler J, Martin M, Gullstrand B, et al. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol. 2012;188(7):3522–3531.
  • Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013;5(178):178ra40.
  • Sur Chowdhury C, Giaglis S, Walker UA, et al. Enhanced neutrophil extracellular trap generation in rheumatoid arthritis: analysis of underlying signal transduction pathways and potential diagnostic utility. Arthritis Res Ther. 2014;16(3):R122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.