262
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Retroviruses in the pathogenesis of systemic lupus erythematosus: Are they potential therapeutic targets?

, &
Pages 177-191 | Received 06 Aug 2019, Accepted 12 Apr 2020, Published online: 23 Apr 2020

References

  • Stojan G, Petri M. Epidemiology of systemic lupus erythematosus: an update. Curr Opin Rheumatol. 2018;30(2):144–150.
  • Rees F, Doherty M, Grainge MJ, et al. The worldwide incidence and prevalence of systemic lupus erythematosus: a systematic review of epidemiological studies. Rheumatology 2017;56(11):1945–1961.
  • Parks CG, de Souza Espindola Santos A, Barbhaiya M, et al. Understanding the role of environmental factors in the development of systemic lupus erythematosus. Best Pract Res Clin Rheumatol. 2017;31(3):306–320.
  • Domeier PP, Schell SL, Rahman ZSM. Spontaneous germinal centers and autoimmunity. Autoimmunity. 2017;50(1):4–18.
  • Podolska MJ, Mahajan A, Knopf J, et al. Autoimmune, rheumatic, chronic inflammatory diseases: neutrophil extracellular traps on parade. Autoimmunity. 2018;51(6):281–287.
  • Kim B, Kaistha SD, Rouse BT. Viruses and autoimmunity. Autoimmunity. 2006;39(1):71–77.
  • Bezalel S, Guri KM, Elbirt D, et al. Type I interferon signature in systemic lupus erythematosus. Isr Med Assoc J. 2014;16(4):246–249.
  • Sozzani S, Bosisio D, Scarsi M, et al. Type I interferons in systemic autoimmunity. Autoimmunity. 2010;43(3):196–203.
  • Ghodke-Puranik Y, Niewold TB. Immunogenetics of systemic lupus erythematosus: a comprehensive review. J Autoimmun. 2015;64:125–136.
  • Conrad B. Potential mechanisms of interferon-α induced autoimmunity. Autoimmunity. 2003;36(8):519–523.
  • Colonna L, Lood C, Elkon KB. Beyond apoptosis in lupus. Curr Opin Rheumatol. 2014;26(5):459–466.
  • Fuentes-González AM, Contreras-Paredes A, Manzo-Merino J, et al. The modulation of apoptosis by oncogenic viruses. Virol J. 2013;10(1):182.
  • Okabe Y, Kawane K, Akira S, et al. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J Exp Med. 2005;202(10):1333–1339.
  • Nagata S. Rheumatoid polyarthritis caused by a defect in DNA degradation. Cytokine Growth Factor Rev. 2008;19(3-4):295–302.
  • Gorji AE, Roudbari Z, Alizadeh A, et al. Investigation of systemic lupus erythematosus (SLE) with integrating transcriptomics and genome wide association information. Gene. 2019;706:181–187.
  • Rice GI, Kasher PR, Forte GMA, et al. Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type i interferon signature. Nat Genet. 2012;44(11):1243–1248.
  • Lee-Kirsch MA, Wolf C, Günther C. Aicardi-Goutières syndrome: a model disease for systemic autoimmunity. Clin Exp Immunol. 2014;175(1):17–24.
  • Costa-Reis P, Sullivan KE. Monogenic lupus: it’s all new! Curr Opin Immunol. 2017;49:87–95.
  • Järvinen TM, Hellquist A, Zucchelli M, et al. Replication of GWAS-identified systemic lupus erythematosus susceptibility genes affirms B-cell receptor pathway signalling and strengthens the role of IRF5 in disease susceptibility in a Northern European population. Rheumatology. 2012;51(1):87–92.
  • Kottyan LC, Zoller J, Bene X, et al. for UK Primary Sjögren's Syndrome Registry. The IRF5-TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share. Hum Mol Genet. 2015;24(2):582–596.
  • El-Araby AM, Fouad AA, Hanbal AM, et al. Epigenetic pathways of oncogenic viruses: therapeutic promises. Arch Pharm Chem Life Sci. 2016;349(2):73–90.
  • Niller HH, Wolf H, Minarovits J. Regulation and dysregulation of Epstein - Barr virus latency: implications for the development of autoimmune diseases. Autoimmunity. 2008;41(4):298–232.
  • Nelson P, Rylance P, Roden D, et al. Viruses as potential pathogenic agents in systemic lupus erythematosus. Lupus. 2014;23(6):596–605.
  • Kerr JR. Pathogenesis of human parvovirus B19 in rheumatic disease. Ann Rheum Dis. 2000;59(9):672–683.
  • Draborg AH, Duus K, Houen G. Epstein-barr virus in systemic autoimmune diseases. Clin Dev Immunol. 2013;2013:1–9.
  • Romani B, Allahbakhshi E. Underlying mechanisms of HIV-1 latency. Virus Genes. 2017;53(3):329–339.
  • Mittleman BB, Morse HC, Payne SM, et al. Amelioration of experimental systemic lupus erythematosus (SLE) by retrovirus infection. J Clin Immunol. 1996;16(4):230–236.
  • Sekigawa I, Kaneko H, Hishikawa T, et al. HIV infection and SLE: their pathogenic relationship. Clin Exp Rheumatol. 1998;16(2):175–180.
  • Quaresma JAS, Yoshikawa GT, Koyama RVL, et al. HTLV-1, immune response and autoimmunity. Viruses. 2015;8(1):5.
  • Shirdel A, Hashemzadeh K, Sahebari M, et al. Is there any association between human lymphotropic virus type I (HTLV-I) infection and systemic lupus erythematosus? an original research and literature review. Iran J Basic Med Sci. 2013;16(3):252–257.
  • Greenig M. HERVs, immunity, and autoimmunity: understanding the connection. PeerJ. 2019;7:e6711.
  • Daskalakis M, Brocks D, Sheng YH, et al. Reactivation of endogenous retroviral elements via treatment with DNMT-and HDAC-inhibitors. Cell Cycle. 2018;17(7):811–822.
  • Perl A, Fernandez D, Telarico T, et al. Endogenous retroviral pathogenesis in lupus. Curr Opin Rheumatol. 2010;22(5):483–492.
  • Tongyoo P, Avihingsanon Y, Prom-On S, et al. EnHERV: enrichment analysis of specific human endogenous retrovirus patterns and their neighboring genes. PLOS One. 2017;12(5):e0177119.
  • Ogasawara H, Naito T, Kaneko H, et al. Quantitative analyses of messenger RNA of human endogenous retrovirus in patients with systemic lupus erythematosus. J Rheumatol. 2001;28(3):533–538.
  • Bengtsson D, Blomberg J, Nived O, et al. Selective antibody reactivity with peptides from human endogenous retroviruses and nonviral poly(amino acids) in patients with systemic lupus erythematosus. Arthritis Rheum. 1996;39(10):1654–1663.
  • Coffin JM. 19910 Retroviridae and their replication. In Fields Virology. Fields BN et al. Editors. 2nd edition. Raven (NY).
  • Hizi A, Herzig E. dUTPase: the frequently overlooked enzyme encoded by many retroviruses. Retrovirology. 2015;12(1):70.
  • Sengupta S, Siliciano RF. Targeting the latent reservoir for HIV-1. Immunity. 2018;48(5):872–895.
  • Dahabieh MS, Battivelli E, Verdin E. Understanding HIV Latency: the road to an HIV Cure. Annu Rev Med. 2015;66(1):407–421.
  • Greenwood AD, Ishida Y, O’Brien SP, et al. Transmission, evolution, and endogenization: lessons learned from recent retroviral invasions. Microbiol. Mol Biol Rev. 2017;82:e00044–17.
  • Coffin JM, Hughes SH, Varmus HE. The place of retroviruses in biology. Retroviruses. 1997; Cold Spring Harbor (NY).
  • Rosen CA. Tat and Rev: positive modulators of human immunodeficiency virus gene expression. Gene Expr. 1991;1(2):85–90.
  • Grandi N, Tramontano E. Human endogenous retroviruses are ancient acquired elements still shaping innate immune responses. Front Immunol. 2018;9:2039.
  • Tugnet N, Rylance P, Roden D, et al. Human Endogenous Retroviruses (HERVs) and autoimmune rheumatic disease: is there a link? TORJ. 2013;7(1):13–21.
  • Hurst TP, Magiorkinis G. Epigenetic control of human endogenous retrovirus expression: focus on regulation of long-terminal repeats (LTRs). Viruses. 2017;9(6):130.
  • Cohen CJ, Lock WM, Mager DL. Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene. 2009;448(2):105–114.
  • SchöN U, Diem O, Leitner L, et al. Human endogenous retroviral long terminal repeat sequences as cell type-specific promoters in retroviral vectors. JVI. 2009;83(23):12643–12650.,
  • Vinogradova TV, Leppik LP, Nikolaev LG, et al. Solitary human endogenous retroviruses-K LTRs retain transcriptional activity in Vivo, the mode of which is different in different cell types. Virology. 2001;290(1):83–90.
  • Bannert N, Kurth R. The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genom Hum Genet. 2006;7(1):149–173.
  • Iwakura Y, Tosu M, Yoshida E, et al. Induction of inflammatory arthropathy resembling rheumatoid arthritis in mice transgenic for HTLV-I. Science (80. 1991;253(5023):1026–1028.
  • Laska MJ, Troldborg A, Hauge EM, et al. Human endogenous retroviral genetic element with immunosuppressive activity in both human autoimmune diseases and experimental arthritis. Arthritis Rheumatol. 2017;69(2):398–409.
  • Morandi E, Tanasescu R, Tarlinton RE, et al. The association between human endogenous retroviruses and multiple sclerosis: a systematic review and meta-analysis. PLOS One. 2017;12(2):e0172415.
  • Talal N. AIDS and Sjogren’s syndrome. Bull Rheum Dis. 1991;40:6–8.
  • Sekigawa I, Ogasawara H, Kaneko H, et al. Retroviruses and Autoimmunity. Intern Med. 2001;40(2):80–86.
  • Weiss RA. Retrovirus classification and cell interactions. J Antimicrob Chemother. 1996;37(suppl B):1–11.
  • Lipka K, Tebbe B, Finckh U, et al. Absence of human T-lymphotrophic virus type I in patients with systemic lupus erythematosus. Clin Exp Dermatol. 1996;21(1):38–42.
  • Bailer RT, Lazo A, Harisdangkul V, et al. Lack of evidence for human T cell lymphotrophic virus type I or II infection in patients with systemic lupus erythematosus or rheumatoid arthritis. J. Rheumatol. 1994;21:2217–2224.
  • Murphy EL, De Ceulaer K, Williams W, et al. Lack of relation between human t-lymphotropic virus type i infection and systemic lupus erythematosus in jamaica, west indies. J Acquir Immune Defic Syndr. 1988;1(1):18–22.
  • Olsen RG, Tarr MJ, Mathes LE, et al. Serological and virological evidence of human T-lymphotropic virus in systemic lupus erythematosus. Med Microbiol Immunol. 1987;176(2):53–64.
  • Danao T, Reghetti G, Yen-Lieberman B, et al. Antibodies to the human T lymphocytotropic type I in systemic lupus erythematosus. Clin Exp Rheumatol. 1991;9:55–58.
  • Akimoto M, Matsushita K, Suruga Y, et al. Clinical manifestations of human T lymphotropic virus type I-infected patients with systemic lupus erythematosus. J Rheumatol. 2007;34:1841–1848.
  • Banki K, Maceda J, Hurley E, et al. Human T-cell lymphotropic virus (HTLV)-related endogenous sequence, HRES-1, encodes a 28-kDa protein: A possible autoantigen for HTLV-I gag-reactive autoantibodies. Proc Natl Acad Sci USA. 1992;89(5):1939–1943.
  • Weber J. The pathogenesis of HIV-1 infection. Br Med Bull. 2001;58(1):61–72.
  • Siliciano RF, Greene WC. HIV latency. Cold Spring Harb Perspect Med. 2011;1(1):a007096–a007096.
  • Palmer S, Maldarelli F, Wiegand A, et al. Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci USA. 2008;105(10):3879–3884.
  • WHO. HIV & AIDS Key facts. World Health Organization 2018. Retrieved from: https://www.who.int/news-room/fact-sheets/detail/hiv-aids.
  • Reveille JD. The changing spectrum of rheumatic disease in human immunodeficiency virus infection. Semin Arthritis Rheum. 2000;30(3):147–166.
  • Hax V, Moro ALD, Piovesan RR, et al. Human immunodeficiency virus in a cohort of systemic lupus erythematosus patients. Adv Rheumatol. 2018;58:12.
  • Virot E, Duclos A, Adelaide L, et al. Autoimmune diseases and HIV infection a cross-sectional study. Med. (United States). 2017;96(4):e5769.
  • Lebrun D, Hentzien M, Cuzin L, et al. Epidemiology of autoimmune and inflammatory diseases in a French nationwide HIV cohort. AIDS. 2017;31:2159–2166.
  • Kaddu-Mukasa M, Ssekasanvu E, Ddumba E, et al. Rheumatic manifestations among HIV positive adults attending the Infectious Disease Clinic at Mulago hospital. Afr Health Sci. 2011;11(1):24–29.
  • Yao Q, Frank M, Glynn M, et al. Rheumatic manifestations in HIV-1 infected in-patients and literature review. Clin Exp Rheumatol. 2008;26(5):799–806.
  • Walker UA, Tyndall A, Daikeler T. Rheumatic conditions in human immunodeficiency virus infection. Rheumatology. 2008;47(7):952–959.
  • Hamid C. K h, Hameed R. A b, Khaliq B. I q, et al. HIV associated lupus like nephropathy. Ethiop J Health Sci. 2014;24(3):277–283.
  • Liao H-Y, Tao C-M, Su J. Concomitant systemic lupus erythematosus and HIV infection: a rare case report and literature review. Medicine (Baltimore. 2017;96(51):e9337.
  • Nguyen BY, Reveille JD. Rheumatic manifestations associated with HIV in the highly active antiretroviral therapy era. Curr Opin Rheumatol. 2009;21(4):404–410.
  • Mantis J, Bhavsar R, Abrudescu A. Drug-induced lupus erythematosus associated with antiretroviral therapy in a patient with human immunodeficiency virus: a case report. Cureus. 2017;9:e1661.
  • Belgaumkar V, Chavan R, Suryataley P, et al. Systemic lupus erythematosus in HIV: an insight into clinical implications and management. Indian J Sex Transm Dis. 2019;40(1):64–66.
  • Vanpatten S, Sun S, He M, et al. Amending HIV Drugs: a novel small-molecule approach to target lupus anti-DNA antibodies. J Med Chem. 2016;59(19):8859–8867.
  • D`Urbano V, De Crignis E, Re MC. Host restriction factors and human immunodeficiency Virus (HIV-1): a dynamic interplay involving all phases of the viral life cycle. CHR. 2018;16(3):184–207.
  • Sandstrom TS, Ranganath N, Angel JB. Impairment of the type I interferon response by HIV-1: Potential targets for HIV eradication. Cytokine Growth Factor Rev. 2017;37:1–16.
  • Ahmed Z, Kawamura T, Shimada S, et al. The role of human dendritic cells in HIV-1 infection. J Invest Dermatol. 2015;135(5):1225–1233.
  • Bonsignori M, Wiehe K, Grimm SK, et al. An autoreactive antibody from an SLE/HIV-1 individual broadly neutralizes HIV-1. J Clin Invest. 2014;124(4):1835–1843.
  • Bonsignori M, Alam SM, Liao HX, et al. HIV-1 antibodies from infection and vaccination: Insights for guiding vaccine design. Trends Microbiol. 2012;20(11):532–539.
  • Norelli S. Could DNA-reactive B lymphocytes be activated through HIV-1 DNA-stimulation involving BCR/TLR-9 pathway to yield antibodies targeting viral DNA?. Med Hypotheses. 2014;83(6):659–663.
  • Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell. 2004;6(4):463–477.
  • Qi YY, Zhou XJ, Zhang H. Autophagy and immunological aberrations in systemic lupus erythematosus. Eur J Immunol. 2019;49(4):523–533.
  • Nardacci R, Ciccosanti F, Marsella C, et al. Role of autophagy in HIV infection and pathogenesis. J Intern Med. 2017;281(5):422–432.
  • Di Benedetto F, Di Sandro S, De Ruvo N, et al. First report on a series of HIV patients undergoing rapamycin monotherapy after liver transplantation. Transplantation. 2010;89(6):733–738.
  • Oaks Z, Winans T, Huang N, et al. Activation of the mechanistic target of rapamycin in SLE: explosion of evidence in the last five years. Curr Rheumatol Rep. 2016;18(12):73
  • Katoh I, Kurata SI. Association of endogenous retroviruses and long terminal repeats with human disorders. Front Oncol. 2013;3:234.
  • Pascual M, Martin J, Nieto A, et al. Distribution of HERV-LTR elements in the 5′-flanking region of HLA-DQB1 and association with autoimmunity. Immunogenetics. 2001;53(2):114–118.
  • Seidl C, Donner H, Petershofen E, et al. An endogenous retroviral long terminal repeat at the HLA-DQB1 gene locus confers susceptibility to rheumatoid arthritis. Hum Immunol. 1999;60(1):63–68.
  • Xue J, Zempleni J. Epigenetic synergies between biotin and folate in the regulation of pro-inflammatory cytokines and repeats. Scand J Immunol. 2013;78(5):419–425.
  • Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science. 2016;351(6277):1083–1087.
  • Manghera M, Ferguson-Parry J, Lin R, et al. NF-κB and IRF1 induce endogenous Retrovirus K expression via interferon-stimulated response elements in its 5′ long terminal repeat. J Virol. 2016;90(20):9338–9349.
  • Chen J, Foroozesh M, Qin Z. Transactivation of human endogenous retroviruses by tumor viruses and their functions in virus-associated malignancies. Oncogenesis. 2019;8(1):6.
  • Bergallo M, Galliano I, Montanari P, et al. CMV induces HERV-K and HERV-W expression in kidney transplant recipients. J Clin Virol. 2015;68:28–31.
  • Gross H, Barth S, Pfuhl T, et al. The NP9 protein encoded by the human endogenous retrovirus HERV-K(HML-2) negatively regulates gene activation of the Epstein-Barr virus nuclear antigen 2 (EBNA2). Int J Cancer. 2011;129(5):1105–1115.
  • Gross H, Hennard C, Masouris I, et al. Binding of the heterogeneous ribonucleoprotein K (hnRNP K) to the epstein-barr virus nuclear antigen 2 (EBNA2) enhances viral LMP2A expression. PLOS One. 2012;7(8):e42106.
  • Gonzalez-Hernandez MJ, Swanson MD, Contreras-Galindo R, et al. Expression of human endogenous retrovirus type K (HML-2) is activated by the tat protein of HIV-1. J. Virol. 2012;86(15):7790–7805.
  • Gonzalez-Hernandez MJ, Cavalcoli JD, Sartor MA, et al. Regulation of the Human Endogenous Retrovirus K (HML-2) transcriptome by the HIV-1 tat protein. J Virol. 2014;88(16):8924–8935.
  • Belshaw R, Katzourakis A, PačEs J, et al. High copy number in human endogenous retrovirus families is associated with copying mechanisms in addition to reinfection. Mol Biol Evol. 2005;22(4):814–817.,
  • An DS, Xie Y.-m, Chen ISY. Envelope gene of the human endogenous retrovirus HERV-W encodes a functional retrovirus envelope. J Virol. 2001;75(7):3488–3489.
  • Monde K, Contreras-Galindo R, Kaplan MH, et al. Human endogenous retrovirus K Gag coassembles with HIV-1 gag and reduces the release efficiency and infectivity of HIV-1. J Virol. 2012;86(20):11194–11208.
  • Hanke K, Hohn O, Bannert N. HERV-K(HML-2), a seemingly silent subtenant - but still waters run deep. Apmis. 2016;124(1–2):67–87.
  • Dewannieux M, Harper F, Richaud A, et al. Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res. 2006;16(12):1548–1556.
  • Kelly JA, Moser KL, Harley JB. The genetics of systemic lupus erythematosus: Putting the pieces together. Genes Immun. 2002;3(S1):S71–S85.
  • Emmer A, Staege MS, Kornhuber ME. The retrovirus/superantigen hypothesis of multiple sclerosis. Cell Mol Neurobiol. 2014;34(8):1087–1096.
  • Perron H, Jouvin-Marche E, Michel M, et al. Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal Vβ16 T-lymphocyte activation. Virology. 2001;287(2):321–332.
  • Balada E, Ordi-Ros J, Vilardell-Tarrés M. Molecular mechanisms mediated by Human Endogenous Retroviruses (HERVs) in autoimmunity. Rev Med Virol. 2009;19(5):273–286.
  • Ogasawara H, Okada M, Kaneko H, et al. Quantitative comparison of human endogenous retrovirus mRNA between SLE and rheumatoid arthritis. Lupus. 2001;10(7):517–518.
  • Ogasawara H, Hishikawa T, Sekigawa I, et al. Sequence analysis of human endogenous retrovirus clone 4-1 in systemic lupus erythematosus. Autoimmunity. 2001;33(1):15–21.
  • Ogasawara H, Kaneko H, Hishikawa T, et al. Molecular mimicry between human endogenous retrovirus clone 4-1 and HLA class I antigen with reference to the pathogenesis of systemic lupus erythematosus [5]. Rheumatology. 1999;38(11):1163–1164.
  • Piotrowski PC, Duriagin S, Jagodzinski PP. Expression of human endogenous retrovirus clone 4-1 may correlate with blood plasma concentration of anti-U1 RNP and anti-Sm nuclear antibodies. Clin Rheumatol. 2005;24(6):620–624.
  • Wu Z, Mei X, Zhao D, et al. DNA methylation modulates HERV-E expression in CD4+ T cells from systemic lupus erythematosus patients. J Dermatol Sci. 2015;77(2):110–116.
  • Sukapan P, Promnarate P, Avihingsanon Y, et al. Types of DNA methylation status of the interspersed repetitive sequences for LINE-1, Alu, HERV-E and HERV-K in the neutrophils from systemic lupus erythematosus patients and healthy controls. J Hum Genet. 2014;59(4):178–188.
  • Wang X, Zhao C, Zhang C, et al. Increased HERV-E clone 4-1 expression contributes to DNA hypomethylation and IL-17 release from CD4+ T cells via miR-302d/MBD2 in systemic lupus erythematosus. Cell Commun Signal. 2019;14:94.
  • Garaud S, Dantec CL, Jousse-Joulin S, et al. IL-6 modulates CD5 expression in B cells from patients with lupus by regulating DNA methylation. J Immunol. 2009;182(9):5623–5632.
  • Nakkuntod J, Sukkapan P, Avihingsanon Y, et al. DNA methylation of human endogenous retrovirus in systemic lupus erythematosus. J Hum Genet. 2013;58(5):241–249.
  • Fali T, Le Dantec C, Thabet Y, et al. DNA methylation modulates HRES1/p28 expression in B cells from patients with Lupus. Autoimmunity. 2014;47(4):265–271.
  • Perl A, Nagy G, Koncz A, et al. Molecular mimicry and immunomodulation by the HRES-1 endogenous retrovirus in SLE. Autoimmunity. 2008;41(4):287–297.
  • Perl A. Pathogenic mechanisms in systemic lupus erythematosus. Autoimmunity. 2010;43(1):1–6.
  • Pullmann R, Bonilla E, Phillips PE, et al. Haplotypes of the HRES-1 endogenous retrovirus are associated with development and disease manifestations of systemic lupus erythematosus. Arthritis Rheum. 2008;58(2):532–540.
  • Fernandez DR, Telarico T, Bonilla E, et al. Activation of mTOR controls the loss of TCR in lupus T cells through HRES-1/Rab4-regualted lysomal degradation. J Immunol. 2009;182(4):2063–2073.
  • Lokossou AG, Toudic C, Barbeau B. Implication of human endogenous retrovirus envelope proteins in placental functions. Viruses. 2014;6(11):4609–4627.
  • Malfavon-Borja R, Feschotte C. Fighting fire with fire: endogenous retrovirus envelopes as restriction factors. J Virol. 2015;89(8):4047–4050.
  • Jolly C, Kashefi K, Hollinshead M, et al. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med. 2004;199(2):283–293.
  • Bannert N, Kurth R. Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci USA. 2004;101(Supplement 2):14572–14579.
  • Mavragani CP, Sagalovskiy I, Guo Q, et al. Expression of long interspersed nuclear element 1 retroelements and induction of type I interferon in patients with systemic autoimmune disease. Arthritis Rheumatol. 2016;68(11):2686–2696.
  • Crow MK. Long interspersed nuclear elements (LINE-1): potential triggers of systemic autoimmune disease. Autoimmunity. 2010;43(1):7–16.
  • Karageorgas TP, Tseronis DD, Mavragani CP. Activation of type I interferon pathway in systemic lupus erythematosus: association with distinct clinical phenotypes. J Biomed Biotechnol. 2011;2011:1–13.
  • Bouts YM, Wolthuis DFGJ, Dirkx MFM, et al. Apoptosis and NET formation in the pathogenesis of SLE. Autoimmunity. 2012;45(8):597–601.
  • Nakkuntod J, Avihingsanon Y, Mutirangura A, et al. Hypomethylation of LINE-1 but not Alu in lymphocyte subsets of systemic lupus erythematosus patients. Clin Chim Acta. 2011;412(15-16):1457–1461.
  • Huang X, Su G, Wang Z, et al. Hypomethylation of long interspersed nucleotide element-1 in peripheral mononuclear cells of juvenile systemic lupus erythematosus patients in China. Int J Rheum Dis. 2014;17(3):280–290.
  • Mavragani CP, Nezos A, Sagalovskiy I, et al. Defective regulation of L1 endogenous retroelements in primary Sjogren’s syndrome and systemic lupus erythematosus: role of methylating enzymes. J. Autoimmun. 2018;88:75–82.
  • Pau AK, George JM. Antiretroviral therapy: current drugs. Infect Dis Clin North Am. 2014;28(3):371–402.
  • Drake WP, Byrd VM, Olsen NJ. Reactivation of systemic lupus erythematosus after initiation of highly active antiretroviral therapy for acquired immunodeficiency syndrome. J Clin Rheumatol. 2003;9(3):176–180.
  • Diri E, Lipsky PE, Berggren RE. Emergence of systemic lupus erythematosus after initiation of highly active antiretroviral therapy for human immunodeficiency virus infection. J Rheumatol. 2000;27(11):2711–2714.
  • Yen YF, Chuang PH, Jen IA, et al. Incidence of autoimmune diseases in a nationwide HIV/AIDS patient cohort in Taiwan, 2000-2012. Ann Rheum Dis. 2017;76(4):661–665.
  • Contreras-Galindo R, Dube D, Fujinaga K, et al. Susceptibility of human endogenous retrovirus type K to reverse transcriptase inhibitors. J Virol. 2017;91:e01309–17.
  • Hohenadl C, Germaier H, Walchner M, et al. Transcriptional activation of endogenous retroviral sequences in human epidermal keratinocytes by UVB irradiation. J Invest Dermatol. 1999;113(4):587–594.
  • Prokop J, Jagodzinski PP. Identification of retroviral DNA sequences in serum of cutaneous forms of lupus erythematosus patients. Eur J Dermatology. 2003;13:354–358.
  • Nagasaka A, Nakai A, Oda N, et al. Reverse transcriptase is elevated in the thyroid tissue from Graves’ disease patients. Clin Endocrinol (Oxf)). 2000;53(2):155–159.
  • Mcdermid J, Chen M, Li Y, et al. Reverse transcriptase activity in patients with primary biliary cirrhosis and other autoimmune liver disorders. Aliment Pharmacol Ther. 2007;26(4):587–595.
  • Wilhelm M, Wilhelm FX. Reverse transcription of retroviruses and LTR retrotransposons. Cell Mol Life Sci. 2001;58(9):1246–1262.
  • Mustelin T, Lood C, Giltiay NV. Sources of pathogenic nucleic acids in systemic lupus erythematosus. Front Immunol. 2019;10:1028.
  • Tarhan F, Vural F, Kosova B, et al. Telomerase activity in connective tissue diseases: Elevated in rheumatoid arthritis, but markedly decreased in systemic sclerosis. Rheumatol Int. 2008;28(6):579–583.
  • Katayama Y, Kohriyama K. Telomerase activity in peripheral blood mononuclear cells of systemic connective tissue diseases. J. Rheumatol. 2001;28:288–291.
  • Dai L, Huang Q, Boeke JD. Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition. BMC Biochem. 2011;12(1):18.
  • Jones RB, Garrison KE, Wong JC, et al. Nucleoside analogue reverse transcriptase inhibitors differentially inhibit human LINE-1 retrotransposition. PLOS One. 2008;3(2):e1547.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.