233
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

CXCL4 promoted the production of CD4+CD25+FOXP3+treg cells in mouse sepsis model through regulating STAT5/FOXP3 pathway

, , , , , , , & show all
Pages 289-296 | Received 26 Feb 2020, Accepted 29 May 2020, Published online: 13 Jun 2020

References

  • Markwart R, Condotta SA, Requardt RP, et al. Immunosuppression after sepsis: systemic inflammation and sepsis induce a loss of Naïve T-cells but no enduring cell-autonomous defects in T-cell function. PloS One. 2014;9(12):e115094.
  • Reinhart K, Bauer M, Riedemann NC, et al. New approaches to sepsis: molecular diagnostics and biomarkers. Clin Microbiol Rev. 2012;25(4):609–634.
  • Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–810.
  • Shen XF, Cao K, Jiang JP, et al. Neutrophil dysregulation during sepsis: an overview and update. J Cell Mol Med. 2017;21(9):1687–1697.
  • Wu HP, Chu CM, Kao KC, et al. High interleukin-10 expression in type 2 T helper cells in septic patients. Immunol Invest. 2017;46(4):385–394.
  • Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.
  • He Y, Xiao Y, Yang X, et al. SIRT6 inhibits TNF-α-induced inflammation of vascular adventitial fibroblasts through ROS and Akt signaling pathway. Exp Cell Res. 2017;357(1):88–97.
  • Jones SL, Ashton CM, Kiehne L, et al. Reductions in sepsis mortality and costs after design and implementation of a nurse-based early recognition and response program. HHS Public Access. 2015;41(11):483–491.
  • Bonelli M, Göschl L, Blüml S, et al. CD4+Foxp3− T cells: a marker for lupus nephritis? Arthritis Res Ther. 2014;16(2):R104.
  • Baecher-Allan C, Brown JA, Freeman GJ, et al. CD4 + CD25high regulatory cells in human peripheral blood. J Immunol. 2001;167(3):1245–1253.
  • Bluestone JA, Tang Q, Sedwick CE. T regulatory cells in autoimmune diabetes: past challenges, future prospects. J Clin Immunol. 2008;28(6):677–684.
  • Schmidt A, Éliás S, Joshi RN, et al. In vitro differentiation of human CD4 + FOXP3+ induced regulatory T cells (iTregs) from Naïve CD4+ T cells using a TGF-β-containing protocol. 2016;2016(118):55015.
  • Schmetterer KG, Neunkirchner A, Pickl WF. Naturally occurring regulatory T cells: markers, mechanisms, and manipulation. Faseb J. 2012;26(6):2253–2276.
  • Hadaschik EN, Enk AH. TGF-β1-induced regulatory T cells. Hum Immunol. 2015;76(8):561–564.
  • Leng FY, Liu JL, Liu ZJ, et al. Increased proportion of CD4 + CD25 + Foxp3 + regulatory T cells during early-stage sepsis in ICU patients. J Microbiol Immunol Infect. 2013;46(5):338–344.
  • Nascimento DC, Alves-Filho JC, Fabiane SN, et al. Role of regulatory T cells in long-term immune dysfunction associated with severe sepsis. Crit Care Med. 2010;38(8):1718–1725.
  • Hiraki S, Ono S, Tsujimoto H, et al. Neutralization of interleukin-10 or transforming growth factor-β decreases the percentages of CD4+ CD25+ Foxp3+ regulatory T cells in septic mice, thereby leading to an improved survival . Surgery. 2012;151(2):313–322. Feb
  • Guillaume M, Anne-Lise D, Fabienne V, et al. Marked elevation of human circulating CD4 + CD25+ regulatory T cells in sepsis-induced immunoparalysis. Critical Care Medicine. 2003;31(7):2068–2071.
  • Linterman Michelle A, Denton AE. Treg cells and CTLA-4: the ball and chain of the germinal center response. Immunity. 2014;41(6):876–878.
  • Sojka DK, Huang YH, Fowell DJ. Mechanisms of regulatory T-cell suppression - a diverse arsenal for a moving target. Immunology. 2008;124(1):13–22.
  • Tomoyuki Y, Ayumi K, Motonao O, et al. Construction of self-recognizing regulatory T cells from conventional T cells by controlling CTLA-4 and IL-2 expression. Proc Natl Acad Sci USA. 2013;110(23):E2116–E2125.
  • Jain N, Nguyen H, Chambers C, et al. Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity. Proc Natl Acad Sci USA. 2010;107(4):1524–1528.
  • Inoue S, Bo L, Bian J, et al. Dose-dependent effect of anti-CTLA-4 on survival in sepsis. Shock. 2011;36(1):38–44.
  • Villarino A, Laurence A, Robinson GW, et al. Signal transducer and activator of transcription 5 (STAT5) paralog dose governs T cell effector and regulatory functions. elife. 2016;5:e08384.
  • Srahna M, Grunsven LA, Remacle JE, et al. CTLA-4 interacts with STAT5 and inhibits STAT5-mediated transcription. Immunology. 2006;117(3):396–401.
  • Burchill MA, Yang J, Vogtenhuber C, et al. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol. 2007;178(1):280–290.
  • Ma H, Gao W, Sun X, et al. STAT5 and TET2 cooperate to regulate FOXP3-TSDR demethylation in CD4+ T cells of patients with colorectal cancer. J Immunol Res. 2018;2018:6985031–6985038.
  • Sinclair A, Park L, Shah M, et al. CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells. Blood. 2016;128(3):371–383.
  • Zhang Y, Gao J, Wang X, et al. CXCL4 mediates tumor regrowth after chemotherapy by suppression of antitumor immunity. Cancer Biol Ther. 2015;16(12):1775–1783.
  • Kasper B, Petersen F. Molecular pathways of platelet factor 4/CXCL4 signaling. Eur J Cell Biol. 2011;90(6–7):521–526.
  • Lasagni L, Francalanci M, Annunziato F, et al. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med. 2003;197(11):1537–1549.
  • Wang X, Zhao Z, Zhu K, et al. Effects of CXCL4/CXCR3 on the lipopolysaccharide‐induced injury in human umbilical vein endothelial cells. J Cell Physiol. 2019;234(12):22378–22385.
  • Liu CY, Battaglia M, Lee SH, et al. Platelet factor 4 differentially modulates CD4 + CD25+ (Regulatory) versus CD4 + CD25- (Nonregulatory) T cells. J Immunol. 2005;174(5):2680–2686.
  • Matics TJ, Sanchez-Pinto LN. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the sepsis-3 definitions in critically Ill children. JAMA Pediatr. 2017;171(10):e172352.
  • Ka W, Ae B, Ih C. Sepsis and septic shock–a review of laboratory models and a proposal. J Surg Res. 1980;29(2):189–201.
  • Toscano MG, Ganea D, Gamero AM. Cecal ligation puncture procedure. J Vis Exp. 2011;7(51):2860.
  • Chaudhry H, Zhou J, Zhong Y, et al. Role of cytokines as a double-edged sword in sepsis. HHS Public Access. 2013;27(6):669–684.
  • Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008 ;8(10):776–787.
  • Ma L, Zhao P, Jiang Z, et al. Imbalance of different types of CD4(+) forkhead box protein 3 (FoxP3)(+) T cells in patients with new-onset systemic lupus erythematosus. Clin Exp Immunol. 2013 ;174(3):345–355. Dec
  • Scumpia PO, Delano MJ, Kelly KM, et al. Increased natural CD4 + CD25+ regulatory T cells and their suppressor activity do not contribute to mortality in murine polymicrobial sepsis. J Immunol. 2006;177(11):7943–7949.
  • Passerini L, Allan SE, Battaglia M, et al. STAT5-signaling cytokines regulate the expression of FOXP3 in CD4 + CD25+ regulatory T cells and CD4 + CD25- effector T cells . Int Immunol. 2008;20(3):421–431.
  • Mao QF, Shang-Guan ZF, Chen HL, et al. Immunoregulatory role of IL-2/STAT5/CD4 + CD25 + Foxp3 Treg pathway in the pathogenesis of chronic osteomyelitis. Ann Transl Med. 2019 ;7(16):384–384. Aug
  • Zheng Y, Wang Z, Deng L, et al. Modulation of STAT3 and STAT5 activity rectifies the imbalance of Th17 and Treg cells in patients with acute coronary syndrome. Clin Immunol. 2015;157(1):65–77.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.