233
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

HERC6 is upregulated in peripheral blood mononuclear cells of patients with systemic lupus erythematosus and promotes the disease progression

, , , , , & show all
Pages 506-514 | Received 21 Apr 2022, Accepted 17 Jul 2022, Published online: 26 Jul 2022

References

  • Fairhurst AM, Wandstrat AE, Wakeland EK. Systemic lupus erythematosus: multiple immunological phenotypes in a complex genetic disease. Adv Immunol. 2006;92:1–69.
  • Ghodke-Puranik Y, Niewold TB. Immunogenetics of systemic lupus erythematosus: a comprehensive review. J Autoimmun. 2015;64:125–136.
  • Liu A, La Cava A. Epigenetic dysregulation in systemic lupus erythematosus [review]. Autoimmunity. 2014;47(4):215–219.
  • Levy DM, Kamphuis S. Systemic lupus erythematosus in children and adolescents. Pediatr Clin North Am. 2012;59(2):345–364.
  • Luo Q, Zhang L, Fang L, et al. Circular RNAs hsa_circ_0000479 in peripheral blood mononuclear cells as novel biomarkers for systemic lupus erythematosus [research support, non-US gov’t]. Autoimmunity. 2020;53(3):167–176.
  • Egner W. The use of laboratory tests in the diagnosis of SLE. J Clin Pathol. 2000;53(6):424–432.
  • Reveille JD. Predictive value of autoantibodies for activity of systemic lupus erythematosus. Lupus. 2004;13(5):290–297.
  • Sternhagen E, Bettendorf B, Lenert A, et al. The role of clinical features and serum biomarkers in identifying patients with incomplete lupus erythematosus at higher risk of transitioning to systemic lupus erythematosus: Current perspectives. J Inflamm Res. 2022;15:1133–1145.
  • Delves PJ, Martin SJ, Burton DR, et al. Roitt’s essential immunology. New Jersey: John Wiley & Sons; 2017.
  • Kurki A, Kemppainen E, Laurikka P, et al. The use of peripheral blood mononuclear cells in celiac disease diagnosis and treatment. Expert Rev Gastroenterol Hepatol. 2021;15(3):305–316.
  • Sariko M, Maro A, Gratz J, et al. Evaluation of cytokines in peripheral blood mononuclear cell supernatants for the diagnosis of tuberculosis. J Inflamm Res. 2018;12:15–22.
  • Bokharaei-Salim F, Esteghamati A, Khanaliha K, et al. Evaluation of a PCR assay for diagnosis of toxoplasmosis in serum and peripheral blood mononuclear cell among HIV/AIDS patients. J Parasit Dis. 2020;44(1):159–165.
  • Mohammadi S, Saghaeian-Jazi M, Sedighi S, et al. Immunomodulation in systemic lupus erythematosus: induction of M2 population in monocyte-derived macrophages by pioglitazone. Lupus. 2017;26(12):1318–1327.
  • Li F, Yang Y, Zhu X, et al. Macrophage polarization modulates development of systemic lupus erythematosus. Cell Physiol Biochem. 2015;37(4):1279–1288.
  • Pickering MC, Botto M, Taylor PR, et al. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol. 2000;76:227–324.
  • Katsiari CG, Liossis SN, Sfikakis PP. The pathophysiologic role of monocytes and macrophages in systemic lupus erythematosus: a reappraisal. Semin Arthritis Rheum. 2010;39(6):491–503.
  • Alvarez-Rodriguez L, Martinez-Taboada V, Calvo-Alen J, et al. Altered Th17/treg ratio in peripheral blood of systemic lupus erythematosus but not primary antiphospholipid syndrome. Front Immunol. 2019;10:391.
  • Yang J, Yang X, Zou H, et al. Recovery of the immune balance between Th17 and regulatory T cells as a treatment for systemic lupus erythematosus. Rheumatology (Oxford). 2011;50(8):1366–1372.
  • Filaci G, Bacilieri S, Fravega M, et al. Impairment of CD8+ T suppressor cell function in patients with active systemic lupus erythematosus. J Immunol. 2001;166(10):6452–6457.
  • Dinesh RK, Skaggs BJ, La Cava A, et al. CD8+ tregs in lupus, autoimmunity, and beyond. Autoimmun Rev. 2010;9(8):560–568.
  • Sanchez-Tena S, Cubillos-Rojas M, Schneider T, et al. Functional and pathological relevance of HERC family proteins: a decade later. Cell Mol Life Sci. 2016;73(10):1955–1968.
  • Dastur A, Beaudenon S, Kelley M, et al. Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J Biol Chem. 2006;281(7):4334–4338.
  • Wong JJ, Pung YF, Sze NS, et al. HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc Natl Acad Sci U S A. 2006;103(28):10735–10740.
  • Ketscher L, Basters A, Prinz M, et al. mHERC6 is the essential ISG15 E3 ligase in the murine system. Biochem Biophys Res Commun. 2012;417(1):135–140.
  • Woolsey C, Jankeel A, Matassov D, et al. Immune correlates of postexposure vaccine protection against Marburg virus. Sci Rep. 2020;10(1):3071.
  • Zeng JC, Lin DZ, Yi LL, et al. BTLA exhibits immune memory for alphabeta T cells in patients with active pulmonary tuberculosis. Am J Transl Res. 2014;6(5):494–506.
  • Sun Y, Lu W, Du K, et al. microRNA and mRNA profiles in the amygdala are relevant to fear memory induced by physical or psychological stress. J Neurophysiol. 2019;122(3):1002–1022.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–408.
  • Nozawa K, Doe K, Uomori K, et al. Antiribonuclease H2 antibodies are an immune biomarker for systemic lupus erythematosus. Autoimmunity. 2017;50(4):241–246.
  • Bakshi J, Segura BT, Wincup C, et al. Unmet needs in the pathogenesis and treatment of systemic lupus erythematosus. Clin Rev Allergy Immunol. 2018;55(3):352–367.
  • Tas SW, Quartier P, Botto M, et al. Macrophages from patients with SLE and rheumatoid arthritis have defective adhesion in vitro, while only SLE macrophages have impaired uptake of apoptotic cells. Ann Rheum Dis. 2006;65(2):216–221.
  • Feng Y, Yang M, Wu H, et al. The pathological role of B cells in systemic lupus erythematosus: from basic research to clinical. Autoimmunity. 2020;53(2):56–64.
  • Garcia-Gonzalo FR, Rosa JL. The HERC proteins: functional and evolutionary insights. Cell Mol Life Sci. 2005;62(16):1826–1838.
  • Huibregtse JM, Scheffner M, Beaudenon S, et al. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci U S A. 1995;92(7):2563–2567.
  • Renault L, Nassar N, Vetter I, et al. The 1.7 a crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature. 1998;392(6671):97–101.
  • Nemergut ME, Mizzen CA, Stukenberg T, et al. Chromatin docking and exchange activity enhancement of RCC1 by histones H2A and H2B. Science. 2001;292(5521):1540–1543.
  • Hadjebi O, Casas-Terradellas E, Garcia-Gonzalo FR, et al. The RCC1 superfamily: from genes, to function, to disease. Biochim Biophys Acta. 2008;1783(8):1467–1479.
  • Oudshoorn D, van Boheemen S, Sanchez-Aparicio MT, et al. HERC6 is the main E3 ligase for global ISG15 conjugation in mouse cells. PLoS One. 2012;7(1):e29870.
  • Bolli R, Dawn B, Xuan YT. Role of the JAK-STAT pathway in protection against myocardial ischemia/reperfusion injury. Trends Cardiovasc Med. 2003;13(2):72–79.
  • Zhuo Q, Wei L, Yin X, et al. LncRNA ZNF667-AS1 alleviates rheumatoid arthritis by sponging miR-523-3p and inactivating the JAK/STAT signalling pathway. Autoimmunity. 2021;54(7):406–414.
  • Zhang LH, Jiang SZ, Guo X, et al. MiR-146b-5p targets IFI35 to inhibit inflammatory response and apoptosis via JAK1/STAT1 signalling in lipopolysaccharide-induced glomerular cells [research support, non-US gov’t]. Autoimmunity. 2021;54(7):430–438.
  • O’Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity. 2012;36(4):542–550.
  • O’Shea JJ, Schwartz DM, Villarino AV, et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–328.
  • Remmers EF, Plenge RM, Lee AT, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 2007;357(10):977–986.
  • Shao WH, Shu DH, Zhen Y, et al. Prion-like aggregation of mitochondrial antiviral signaling protein in lupus patients is associated with increased levels of type I interferon. Arthritis Rheumatol. 2016;68(11):2697–2707.
  • Liang Y, Xu WD, Peng H, et al. SOCS signaling in autoimmune diseases: molecular mechanisms and therapeutic implications. Eur J Immunol. 2014;44(5):1265–1275.
  • Sukka-Ganesh B, Larkin J, 3rd. Therapeutic potential for targeting the suppressor of cytokine signalling-1 pathway for the treatment of SLE. Scand J Immunol. 2016;84(5):299–309.
  • de la Varga Martinez R, Rodriguez-Bayona B, Anez GA, et al. Clinical relevance of circulating anti-ENA and anti-dsDNA secreting cells from SLE patients and their dependence on STAT-3 activation. Eur J Immunol. 2017;47(7):1211–1219.
  • Wang S, Yang N, Zhang L, et al. Jak/STAT signaling is involved in the inflammatory infiltration of the kidneys in MRL/lpr mice. Lupus. 2010;19(10):1171–1180.
  • Lu LD, Stump KL, Wallace NH, et al. Depletion of autoreactive plasma cells and treatment of lupus nephritis in mice using CEP-33779, a novel, orally active, selective inhibitor of JAK2. J Immunol. 2011;187(7):3840–3853.
  • Ripoll E, de Ramon L, Draibe Bordignon J, et al. JAK3-STAT pathway blocking benefits in experimental lupus nephritis. Arthritis Res Ther. 2016;18(1):134.
  • Wu T, Ye Y, Min SY, et al. Prevention of murine lupus nephritis by targeting multiple signaling axes and oxidative stress using a synthetic triterpenoid. Arthritis Rheumatol. 2014;66(11):3129–3139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.