187
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Kupffer cell inactivation ameliorates immune liver injury via TNF-α/TNFR1 signal pathway in trichloroethylene sensitized mice

, , , , , , & show all
Pages 545-555 | Received 20 Aug 2019, Accepted 07 Aug 2020, Published online: 13 Sep 2020

References

  • Kang YJ, Lee J, Ahn J, et al. Trichloroethylene hypersensitivity syndrome: should be considered when diagnosing DRESS syndrome. J Korean Med Sci. 2018;33:e106.
  • Wang F, Huang LP, Dai YY, et al. Terminal complement complex C5b-9 reduced megalin and cubilin-mediated tubule proteins uptake in a mouse model of trichloroethylene hypersensitivity syndrome. Toxicol Lett. 2019;317:110–119.
  • ATSDR (Agency for Toxic Substances and Disease Registery). Health statistics review: cancer and birth outcomes analysis: Endicott area investigation. Atlanta (GA): U. S. Department of Health & Human Services; 2006.
  • Zhang JX, Li N, Wang H, et al. The immune response in trichloroethylene hypersensitivity syndrome: a review. Toxicol Ind Health. 2017;33:876–883.
  • Guha N, Loomis D, Grosse Y, et al. Carcinogenicity of trichloroethylene, tetrachloroethylene, some other chlorinated solvents, and their metabolites. Lancet Oncol. 2012;13:1192–1193.
  • Zhang C, Yu Y, Yu JF, et al. Viral mimic polyinosine-polycytidylic acid potentiates liver injury in trichloroethylene-sensitized mice – viral-chemical interaction as a novel mechanism. Ecotoxicol Environ Saf. 2018;155:101–108.
  • Zhou YH, Cichocki JA, Soldatow VY, et al. Editor’s highlight: comparative dose-response analysis of liver and kidney transcriptomic effects of trichloroethylene and tetrachloroethylene in B6C3F1 mouse . Toxicol Sci. 2017;160:95–110.
  • Fiorucci S, Rizzo G, Antonelli E, et al. Cross-talk between farnesoid-X-receptor (FXR) and peroxisome proliferator-activated receptor gamma contributes to the antifibrotic activity of FXR ligands in rodent models of liver cirrhosis. J Pharmacol Exp Ther. 2005;315:58–68.
  • Pegoretti V, Baron W, Laman JD, et al. Selective modulation of TNF-TNFRs signaling: insights for multiple sclerosis treatment. Front Immunol. 2018;9:925.
  • Szondy Z, Pallai A. Transmembrane TNF-alpha reverse signaling leading to TGF-beta production is selectively activated by TNF targeting molecules: therapeutic implications. Pharmacol Res. 2017;115:124–132.
  • Brenner C, Galluzzi L, Kepp O, et al. Decoding cell death signals in liver inflammation. J Hepatol. 2013;59:583–594.
  • Xu MX, Ge CX, Qin YT, et al. Multicombination approach suppresses listeria monocytogenes-induced septicemia-associated acute hepatic failure: the role of iRhom2 signaling. Adv Healthc Mater. 2018;7:e1800427.
  • Tajpara P, Schuster C, Schön E, et al. Epicutaneous administration of the pattern recognition receptor agonist polyinosinic-polycytidylic acid activates the MDA5/MAVS pathway in Langerhans cells. Faseb J. 2018;32:4132–4144.
  • Golden-Mason L, Rosen HR. Galectin-9: diverse roles in hepatic immune homeostasis and inflammation. Hepatology. 2017;66:271–279.
  • Zeng T, Zhang C-L, Xiao M, et al. Critical roles of Kupffer cells in the pathogenesis of alcoholic liver disease: from basic science to clinical trials. Front Immunol. 2016;7:538.
  • Liu LM, Liang DY, Ye CG, et al. The UII/UT system mediates upregulation of proinflammatory cytokines through p38 MAPK and NF-κB pathways in LPS-stimulated Kupffer cells. Plos One. 2015;10:e0121383.
  • Wang G, Li X, Chen S, et al. Expression profiles uncover the correlation of OPN signaling pathways with rat liver regeneration at cellular level. Cell Biol Int. 2015;39:1329–1340.
  • Lambertucci F, Arboatti A, Sedlmeier MG, et al. Disruption of tumor necrosis factor alpha receptor 1 signaling accelerates NAFLD progression in mice upon a high-fat diet. J Nutr Biochem. 2018;58:17–27.
  • Faustman D, Davis M. TNF receptor 2 pathway: drug target for autoimmune diseases. Nat Rev Drug Discov. 2010;9:482–493.
  • Ren X, Yang X, Hong WX, et al. Identification of the proteins related to SET-mediated hepatic cytotoxicity of trichloroethylene by proteomic analysis. Toxicol Lett. 2014;227:12–19.
  • Ren X, Li J, Xia B, et al. Phosphoproteomic analyses of L-02 liver cells exposed to trichloroethylene. Toxicol Mech Methods. 2015;25:459–466.
  • Ren X, Huang X, Yang X, et al. SET mediates TCE-induced liver cell apoptosis through dephosphorylation and upregulation of nucleolin. Oncotarget. 2017;8:40958–40966.
  • Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65.
  • Walczak H. TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Immunol Rev. 2011;244:9–28.
  • Wang H, Zhang JX, Li SL, et al. An animal model of trichloroethylene-induced skin sensitization in Balb/c mice. Int J Toxicol. 2015;34:442–453.
  • Moriconi F, Ahmad G, Ramadori P, et al. Phagocytosis of gadolinium chloride or zymosan induces simultaneous upregulation of hepcidin- and downregulation of hemojuvelin- and Fpn-1-gene expression in murine liver. Lab Invest. 2009;89:1252–1260.
  • Cooper GS, Makris SL, Nietert PJ, et al. Evidence of autoimmune-related effects of trichloroethylene exposure from studies in mice and humans. Environ Health Perspect. 2009;117:696–702.
  • Ramdhan DH, Kamijima M, Yamada N, et al. Molecular mechanism of trichloroethylene-induced hepatotoxicity mediated by CYP2E1. Toxicol Appl Pharmacol. 2008;231:300–307.
  • Montalbán R, Alio JL, Javaloy J, et al. Comparative analysis of the relationship between anterior and posterior corneal shape analyzed by Scheimpflug photography in normal and keratoconus eyes. Graefes Arch Clin Exp Ophthalmol. 2013;251:1547–1555.
  • Jia Q, Zang D, Yi J, et al. Cytokine expression in trichloroethylene-induced hypersensitivity dermatitis: an in vivo and in vitro study. Toxicol Lett. 2012;215:31–39.
  • Zang D, Yi J, Dong HY, et al. Association between cytokines and trichloroethylene-induced hypersensitivity dermatitis. Zhonghua Yu Fang Yi Xue Za Zhi. 2012;46:836–839.
  • Kamijima M, Wang H, Yamanoshita O, et al. Occupational trichloroethylene hypersensitivity syndrome: human herpesvirus 6 reactivation and rash phenotypes. J Dermatol Sci. 2013;72:218–224.
  • Blossom SJ, Doss JC, Hennings LJ, et al. Developmental exposure to trichloroethylene promotes CD4+ T cell differentiation and hyperactivity in association with oxidative stress and neurobehavioral deficits in MRL+/+ mice. Toxicol Appl Pharmacol. 2008;231:344–353.
  • Liu M, Wang H, Zhang J, et al. NF-κB signaling pathway-enhanced complement activation mediates renal injury in trichloroethylene-sensitized mice. J Immunotoxicol. 2018;15:63–72.
  • Zhang J, Li N, Yang L, et al. Bradykinin contributes to immune liver injury via B2R receptor-mediated pathways in trichloroethylene sensitized mice: a role in kupffer cell activation. Toxicology. 2019;415:37–48.
  • Zhou P, Gross S, Liu JH, et al. Flavokawain B, the hepatotoxic constituent from kava root, induces GSH-sensitive oxidative stress through modulation of IKK/NF-kappaB and MAPK signaling pathways. Faseb J. 2010;24:4722–4732.
  • He P, Noda Y, Sugiyama K. Green tea suppresses lipopolysaccharide-induced liver injury in d-galactosamine-sensitized rats. J Nutr. 2001;131:1560–1567.
  • Morgan JA, Singhal G, Corrigan F, et al. TNF signalling via the TNF receptors mediates the effects of exercise on cognition-like behaviours. Behav Brain Res. 2018;353:74–82.
  • Richter C, Messerschmidt S, Holeiter G, et al. The tumor necrosis factor receptor stalk regions define responsiveness to soluble versus membrane-bound ligand. Mol Cell Biol. 2012;32:2515–2529.
  • Dreschers S, Gille C, Haas M, et al. Reduced internalization of TNF-α/TNFR1 down-regulates caspase dependent phagocytosis induced cell death (PICD) in neonatal monocytes. Plos One. 2017;12:e0182415.
  • Asweto CO, Wu J, Alzain MA, et al. Cellular pathways involved in silica nanoparticles induced apoptosis: a systematic review of in vitro studies. Environ Toxicol Pharmacol. 2017;56:191–197.
  • Sedger LM, Mcdermott MF. TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants – past, present and future. Cytokine Growth Factor Rev. 2014;25:453–472.
  • Ho PK, Hawkins CJ. Mammalian initiator apoptotic caspases. Febs J. 2005;272:5436–5453.
  • Keller N, Ozmadenci D, Ichim G, et al. Caspase-8 function, and phosphorylation, in cell migration. Semin Cell Dev Biol. 2018;82:105–117.
  • Nong K, Wang W, Niu X, et al. Hepatoprotective effect of exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats. Cytotherapy. 2016;18:1548–1559.
  • Kim SJ, Eum HA, Billiar TR, et al. Role of heme oxygenase 1 in TNF/TNF receptor-mediated apoptosis after hepatic ischemia/reperfusion in rats. Shock. 2013;39:380–388.
  • Gao B, Seki E, Brenner DA, et al. Innate immunity in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol. 2011;300:G516–G525.
  • Georgiadou M, Notas G, Xidakis C, et al. TNF receptors in Kupffer cells. J Recept Signal Transduct Res. 2011;31:291–298.
  • Church RJ, Watkins PB. The transformation in biomarker detection and management of drug-induced liver injury. Liver Int. 2017;37:1582–1590.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.