165
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Mifepristone regulates Tregs function mediated by dendritic cells through suppressing the expression of TGF-β

, , , , &
Pages 85-93 | Received 13 Apr 2020, Accepted 10 Dec 2020, Published online: 06 Jan 2021

References

  • Belanoff JK, Flores BH, Kalezhan M, et al. Rapid reversal of psychotic depression using mifepristone. J Clin Psychopharmacol. 2001;21(5):516–521.
  • Schreiber JR, Hsueh AJ, Baulieu EE. Binding of the anti-progestin RU-486 to rat ovary steroid receptors. Contraception. 1983;28(1):77–85.
  • Cadepond F, Ulmann A, Baulieu EE. RU486 (mifepristone): mechanisms of action and clinical uses. Annu Rev Med. 1997;48:129–156.
  • Li HWR, Li YX, Li TT, et al. Effect of ulipristal acetate and mifepristone at emergency contraception dose on the embryo-endometrial attachment using an in vitro human trophoblastic spheroid and endometrial cell co-culture model. Hum Reprod. 2017;32(12):2414–2422.
  • Li YT, Hsieh JC, Hou GQ, et al. Simultaneous use of mifepristone and misoprostol for early pregnancy termination. Taiwan J Obstet Gynecol. 2011;50(1):11–14.
  • Cuevas CA, Tapia-Pizarro A, Salvatierra AM, et al. Effect of single post-ovulatory administration of mifepristone (RU486) on transcript profile during the receptive period in human endometrium. Reproduction. 2016;151(4):331–349.
  • Kannan A, Bhurke A, Sitruk-Ware R, et al. Characterization of molecular changes in endometrium associated with chronic use of progesterone receptor modulators: ulipristal acetate versus mifepristone. Reprod Sci. 2018;25(3):320–328.
  • Rearte B, Maglioco A, Balboa L, et al. Mifepristone (RU486) restores humoral and T cell-mediated immune response in endotoxin immunosuppressed mice. Clin Exp Immunol. 2010;162(3):568–577.
  • Aronoff DM, Hao Y, Chung J, et al. Misoprostol impairs female reproductive tract innate immunity against Clostridium sordellii. J Immunol. 2008;180:8222–8230.
  • Miech RP. Disruption of the innate immune system by mifepristone and lethal toxin of Clostridium sordellii. J Org Dysfunct. 2008;4(2):122–126.
  • Sharma S. Natural killer cells and regulatory T cells in early pregnancy loss. Int J Dev Biol. 2014;58(2–4):219–229.
  • Fang WN, Shi M, Meng CY, et al. The balance between conventional DCs and plasmacytoid DCs is pivotal for immunological tolerance during pregnancy in the mouse. Sci Rep. 2016;6:26984.
  • Du MR, Guo PF, Piao HL, et al. Embryonic trophoblasts induce decidual regulatory T cell differentiation and maternal-fetal tolerance through thymic stromal lymphopoietin instructing dendritic cells. J Immunol. 2014;192(4):1502–1511.
  • Laskarin G, Kammerer U, Rukavina D, et al. Antigen-presenting cells and materno-fetal tolerance: an emerging role for dendritic cells. Am J Reprod Immunol. 2007;58(3):255–267.
  • Krey G, Frank P, Shaikly V, et al. In vivo dendritic cell depletion reduces breeding efficiency, affecting implantation and early placental development in mice. J Mol Med (Berl). 2008;86(9):999–1011.
  • Hall BM, Plain KM, Tran GT, et al. Cytokines affecting CD4 + T regulatory cells in transplant tolerance. III. Interleukin-5 (IL-5) promotes survival of alloantigen-specific CD4+ T regulatory cells. Transpl Immunol. 2017;43–44:33–41.
  • Sakaguchi S, Ono M, Setoguchi R, et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev. 2006;212:8–27.
  • Wood KJ. Regulatory T cells in transplantation. Transplant Proc. 2011;43(6):2135–2136.
  • Tilburgs T, Roelen DL, van der Mast BJ, et al. Evidence for a selective migration of fetus-specific CD4 + CD25bright regulatory T cells from the peripheral blood to the decidua in human pregnancy. J Immunol. 2008;180(8):5737–5745.
  • Xiong H, Zhou C, Qi G. Proportional changes of CD4 + CD25 + Foxp3+ regulatory T cells in maternal peripheral blood during pregnancy and labor at term and preterm. Clin Invest Med. 2010;33(6):422.
  • Puxon M. Legal aspects of deaths associated with diagnostic and therapeutic procedures. Ann Acad Med Singap. 1984;13(1):46–48.
  • Araujo EF, Medeiros DH, Galdino NA, et al. Tolerogenic plasmacytoid dendritic cells control paracoccidioides brasiliensis infection by inducting regulatory T cells in an IDO-dependent manner. PLoS Pathog. 2016;12(12):e1006115.
  • Zong S, Li C, Luo C, et al. Dysregulated expression of IDO may cause unexplained recurrent spontaneous abortion through suppression of trophoblast cell proliferation and migration. Sci Rep. 2016;6:19916.
  • Abram DM, Fernandes LGR, Ramos Filho ACS, et al. The modulation of enzyme indoleamine 2,3-dioxygenase from dendritic cells for the treatment of type 1 diabetes mellitus. Drug Des Devel Ther. 2017;11:2171–2178.
  • Speeckaert R, van Geel N. Targeting CTLA-4, PD-L1 and IDO to modulate immune responses in vitiligo. Exp Dermatol. 2017;26(7):630–634.
  • Alameddine J, Godefroy E, Papargyris L, et al. Faecalibacterium prausnitzii skews human DC to prime IL10-producing T cells through TLR2/6/JNK signaling and IL-10, IL-27, CD39, and IDO-1 induction. Front Immunol. 2019;10:143.
  • Konkel JE, Zhang D, Zanvit P, et al. Transforming growth factor-β signaling in regulatory T cells controls T helper-17 cells and tissue-specific immune responses. Immunity. 2017;46(4):660–674.
  • Tran DQ. TGF-β: the sword, the wand, and the shield of FOXP3(+) regulatory T cells. J Mol Cell Biol. 2012;4(1):29–37.
  • Shevach EM, Davidson TS, Huter EN, et al. Role of TGF-beta in the induction of Foxp3 expression and T regulatory cell function. J Clin Immunol. 2008;28(6):640–646.
  • Fu S, Zhang N, Yopp AC, et al. TGF-beta induces Foxp3 + T-regulatory cells from CD4 + CD25 – precursors. Am J Transplant. 2004;4(10):1614–1627.
  • Larange A, Antonios D, Pallardy M, et al. Glucocorticoids inhibit dendritic cell maturation induced by Toll-like receptor 7 and Toll-like receptor 8. J Leukoc Biol. 2012;91(1):105–117.
  • Wang Y, Yao R, Zhang L, et al. IDO and intra-tumoral neutrophils were independent prognostic factors for overall survival for hepatocellular carcinoma. J Clin Lab Anal. 2019;33(5):e22872.
  • Ni XY, Sui HX, Liu Y, et al. TGF-β of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell tory T cell generation. Oncol Rep. 2012;28(2):615–621.
  • Worthington JJ, Czajkowska BI, Melton AC, et al. Intestinal dendritic cells specialize to activate transforming growth factor-β and induce Foxp3+ regulatory T cells via integrin αvβ8. Gastroenterology. 2011;141(5):1802–1812.
  • DeVito NC, Plebanek MP, Theivanthiran B, et al. Role of tumor-mediated dendritic cell tolerization in immune evasion. Front Immunol. 2019;10:2876–2876.
  • Keswani T, Sarkar S, Sengupta A, et al. Role of TGF-β and IL-6 in dendritic cells, Treg and Th17 mediated immune response during experimental cerebral malaria. Cytokine. 2016;88:154–166.
  • Creinin MD, Hou MY, Dalton L, et al. Mifepristone antagonization with progesterone to prevent medical abortion: a randomized controlled trial. Obstet Gynecol. 2020;135(1):158–165.
  • Chen Y, Wang W, Zhuang Y, et al. Effects of low-dose mifepristone administration in two different 14-day regimens on the menstrual cycle and endometrial development: a randomized controlled trial. Contraception. 2011;84(1):64–70.
  • Danielsson KG, Swahn ML, Westlund P, et al. Effect of low daily doses of mifepristone on ovarian function and endometrial development. Hum Reprod. 1997;12(1):124–131.
  • Jorgensen N, Persson G, Hviid TVF. The tolerogenic function of regulatory T cells in pregnancy and cancer. Front Immunol. 2019;10:911.
  • Pomeroy B, Klaessig S, Schukken Y. Impact of in vitro treatments of physiological levels of estradiol and progesterone observed in pregnancy on bovine monocyte-derived dendritic cell differentiation and maturation. Vet Immunol Immunopathol. 2016;182:37–42.
  • Abediankenari S, Yousefzadeh Y, Azadeh H, et al. Comparison of several maturation inducing factors in dendritic cell differentiation. Iran J Immunol. 2010;7(2):83–87.
  • Kim HJ, Kim HO, Lee K, et al. Two-step maturation of immature DCs with proinflammatory cytokine cocktail and poly(I:C) enhances migratory and T cell stimulatory capacity. Vaccine. 2010;28(16):2877–2886.
  • Mailliard RB, Egawa S, Cai Q, et al. Complementary dendritic cell-activating function of CD8+ and CD4+ T cells: helper role of CD8+ T cells in the development of T helper type 1 responses. J Exp Med. 2002;195(4):473–483.
  • Braun A, Worbs T, Moschovakis GL, et al. Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nat Immunol. 2011;12(9):879–887.
  • Qian J, Zhang N, Lin J, et al. Distinct pattern of Th17/Treg cells in pregnant women with a history of unexplained recurrent spontaneous abortion. Biosci Trends. 2018;12(2):157–167.
  • Mei S, Tan J, Chen H, et al. Changes of CD4+CD25high regulatory T cells and FOXP3 expression in unexplained recurrent spontaneous abortion patients. Fertil Steril. 2010;94(6):2244–2247.
  • Schulke S, Kuttich K, Wolfheimer S, et al. Author correction: conjugation of wildtype and hypoallergenic mugwort allergen Art v 1 to flagellin induces IL-10-DC and suppresses allergen-specific TH2-responses in vivo. Sci Rep. 2018;8(1):2745.
  • Li J, Yang Y, Zhang YA, et al. Expression and significance of IL-10 in human chorionic villi of recurrent spontaneous abortion. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2011;27:1065–1067.
  • Thepmalee C, Panya A, Junking M, et al. Inhibition of IL-10 and TGF-β receptors on dendritic cells enhances activation of effector T-cells to kill cholangiocarcinoma cells. Hum Vaccin Immunother. 2018;14(6):1423–1431.
  • Seeger P, Musso T, Sozzani S. The TGF-β superfamily in dendritic cell biology. Cytokine Growth Factor Rev. 2015;26(6):647–657.
  • Dodge IL, Demirci G, Strom TB, et al. Rapamycin induces transforming growth factor-beta production by lymphocytes. Transplantation. 2000;70(7):1104–1106.
  • Xiong W, Frasch SC, Thomas SM, et al. Induction of TGF-β1 synthesis by macrophages in response to apoptotic cells requires activation of the scavenger receptor CD36. PLoS One. 2013;8(8):e72772.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.