488
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Immunomodulatory activity of puerarin in RAW264.7 macrophages and cyclophosphamide-induced immunosuppression mice

ORCID Icon, , , , , , & show all
Pages 223-229 | Received 14 Jul 2020, Accepted 24 Jan 2021, Published online: 14 Feb 2021

References

  • Kumar D, Arya V, Kaur R, et al. A review of immunomodulators in the Indian traditional health care system. J Microbiol Immunol Infect. 2012;45(3):165–184.
  • Mohamed SIA, Jantan I, Haque MA. Naturally occurring immunomodulators with antitumor activity: an insight on their mechanisms of action. Int Immunopharmacol. 2017;50:291–304.
  • Wang Y, Jin H, Yu J, et al. Quality control and immunological activity of lentinan samples produced in China. Int J Biol Macromol. 2020;159:129–136.
  • Sun Q-L, Li Y-X, Cui Y-S, et al. Structural characterization of three polysaccharides from the roots of Codonopsis pilosula and their immunomodulatory effects on RAW264.7 macrophages. Int J Biol Macromol. 2019;130:556–563.
  • Yu Q, Nie S-P, Wang J-Q, et al. Chemoprotective effects of ganoderma atrum polysaccharide in cyclophosphamide-induced mice. Int J Biol Macromol. 2014;64:395–401.
  • Zheng Y, Zong Z-M, Chen S-L, et al. Ameliorative effect of Trametes orientalis polysaccharide against immunosuppression and oxidative stress in cyclophosphamide-treated mice. Int J Biol Macromol. 2017;95:1216–1222.
  • Liu N, Dong Z, Zhu X, et al. Characterization and protective effect of Polygonatum sibiricum polysaccharide against cyclophosphamide-induced immunosuppression in Balb/c mice. Int J Biol Macromol. 2018;107(Pt A):796–802.
  • Wang X, Wang Z, Wu H, et al. Sarcodon imbricatus polysaccharides protect against cyclophosphamide-induced immunosuppression via regulating Nrf2-mediated oxidative stress. Int J Biol Macromol. 2018;120(Pt A):736–744.
  • Yang Y, Chen J, Lei L, et al. Acetylation of polysaccharide from Morchella angusticeps peck enhances its immune activation and anti-inflammatory activities in macrophage RAW264.7 cells. Food Chem Toxicol. 2019;125:38–45.
  • Liu X, Xie J, Jia S, et al. Immunomodulatory effects of an acetylated Cyclocarya paliurus polysaccharide on murine macrophages RAW264.7. Int J Biol Macromol. 2017;98:576–581.
  • Wei X-J, Hu T-J, Chen J-R, et al. Inhibitory effect of carboxymethylpachymaran on cyclophosphamide-induced oxidative stress in mice. Int J Biol Macromol. 2011;49(4):801–805.
  • Ren Z, Qin T, Qiu F, et al. Immunomodulatory effects of hydroxyethylated Hericium erinaceus polysaccharide on macrophages RAW264.7. Int J Biol Macromol. 2017;105(Pt 1):879–885.
  • Yu Y, Shen M, Wang Z, et al. Sulfated polysaccharide from Cyclocarya paliurus enhances the immunomodulatory activity of macrophages. Carbohydr Polym. 2017;174:669–676.
  • Gandhi GR, Neta MTSL, Sathiyabama RG, et al. Flavonoids as Th1/Th2 cytokines immunomodulators: a systematic review of studies on animal models. Phytomedicine. 2018;44:74–84.
  • Wang Y, Qi Q, Li A, et al. Immuno-enhancement effects of Yifei Tongluo granules on cyclophosphamide-induced immunosuppression in Balb/c mice. J Ethnopharmacol. 2016;194:72–82.
  • Huang C, Song K, Ma W, et al. Immunomodulatory mechanism of Bushen Huoxue Recipe alleviates cyclophosphamide-induced diminished ovarian reserve in mouse model. J Ethnopharmacol. 2017;208:44–56.
  • Catap ES, Kho MJL, Jimenez MRR. In vivo nonspecific immunomodulatory and antispasmodic effects of common purslane (Portulaca oleracea Linn.) leaf extracts in ICR mice. J Ethnopharmacol. 2018;215:191–198.
  • Yeung DKY, Leung SWS, Xu YC, et al. Puerarin, an isoflavonoid derived from Radix puerariae, potentiates endothelium-independent relaxation via the cyclic AMP pathway in porcine coronary artery. Eur J Pharmacol. 2006;552(1-3):105–111.
  • Wu J, Zhang X, Zhang B. Efficacy and safety of puerarin injection in treatment of diabetic pe-ripheral neuropathy: a systematic review and meta-analysis of ran-domized controlled trials. J Tradit Chin Med. 2014;34:402–410.
  • Yamamoto T, Matsunami E, Komori K, et al. The isoflavone puerarin induces Foxp3+ regulatory T cells by augmenting retinoic acid production, thereby inducing mucosal immune tolerance in a murine food allergy model. Biochem Biophys Res Commun. 2019;516(3):626–631.
  • Lee J-H, Jeon Y-D, Lee Y-M, et al. The suppressive effect of puerarin on atopic dermatitis-like skin lesions through regulation of inflammatory mediators in vitro and in vivo. Biochem Biophys Res Commun. 2018;498(4):707–714.
  • Xu H, Hu M, Liu M, et al. Nano-puerarin regulates tumor microenvironment and facilitates chemo- and immunotherapy in murine triple negative breast cancer model. Biomaterials. 2020;235:119769.
  • Dong Z, Zhang M, Li H, et al. Structural characterization and immunomodulatory activity of a novel polysaccharide from Pueraria lobata (Willd.) Ohwi root. Int J Biol Macromol. 2020;154:1556–1564.
  • Liu Q-M, Xu S-S, Li L, et al. In vitro and in vivo immunomodulatory activity of sulfated polysaccharide from Porphyra haitanensis. Carbohydr Polym. 2017;165:189–196.
  • Zhang M, Tian X, Wang Y, et al. Immunomodulating activity of the polysaccharide TLH-3 from tricholomalobayense in RAW264.7 macrophages. Int J Biol Macromol. 2018;107(Pt B):2679–2685.
  • Zhu Q, Liao C, Liu Y, et al. Ethanolic extract and water-soluble polysaccharide from Chaenomeles speciosa fruit modulate lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophage cells. J Ethnopharmacol. 2012;144(2):441–447.
  • Sun S, Li K, Xiao L, et al. Characterization of polysaccharide from Helicteres angustifolia L. and its immunomodulatory activities on macrophages RAW264.7. Biomed Pharmacother. 2019;109:262–270.
  • Sun H, Zhang J, Chen F, et al. Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms. Carbohydr Polym. 2015;121:388–402.
  • Xiong L, Ouyang K-H, Jiang Y, et al. Chemical composition of Cyclocarya paliurus polysaccharide and inflammatory effects in lipopolysaccharide-stimulated RAW264.7 macrophage. Int J Biol Macromol. 2018;107(Pt B):1898–1907.
  • Jubrail J, Kurian N, Niedergang F. Macrophage phagocytosis cracking the defect code in COPD. Biomed J. 2017;40(6):305–312.
  • Alamuru-Yellapragada NP, Kapadia B, Parsa KVL. In-house made nucleofection buffer for efficient and cost effective transfection of RAW 264.7 macrophages. Biochem Biophys Res Commun. 2017;487(2):247–254.
  • Bi D, Zhou R, Cai N, et al. Alginate enhances Toll-like receptor 4-mediated phagocytosis by murine RAW264.7 macrophages. Int J Biol Macromol. 2017;105(Pt 2):1446–1454.
  • Zang L, Wang J, Ren Y, et al. Activated toll-like receptor 4 is involved in oridonin-induced phagocytosis via promotion of migration and autophagy-lysosome pathway in RAW264.7 macrophages. Int Immunopharmacol. 2019;66:99–108.
  • Guo Z, Liu Y, Zhou H, et al. CD47-targeted bismuth selenide nanoparticles actualize improved photothermal therapy by increasing macrophage phagocytosis of cancer cells. Colloids Surf B Biointerf. 2019;184:110546.
  • Wang Y, Osatomi K, Yoshida A, et al. Extracellular products from virulent strain of Edwardsiella tarda stimulate mouse macrophages (RAW264.7) to produce nitric oxide (NO) and tumor necrosis factor (TNF)-alpha. Fish Shellfish Immunol. 2010;29(5):778–785.
  • Miao J-f, Zhang Y-s, Huang G-q, et al. Polysaccharide nucleic acid of Bacillus Calmette Guerin modulates Th1/Th2 cytokine gene expression in lipopolysaccharide-induced mastitis in rats. Agric Sci China. 2009;8(8):1010–1018.
  • Fang J, Liang CL, Jia XD, et al. Immunotoxicity of acrylamide in female BALB/c mice. Biomed Environ Sci. 2014;27(6):401–409.
  • Zhao T, Feng Y, Li J, et al. Schisandra polysaccharide evokes immunomodulatory activity through TLR 4-mediated activation of macrophages. Int J Biol Macromol. 2014;65:33–40.
  • Kumar VP, Venkatesh YP. Alleviation of cyclophosphamide-induced immunosuppression in Wistar rats by onion lectin (Allium cepa agglutinin). J Ethnopharmacol. 2016;186:280–288.
  • Li Q, Chen G, Chen H, et al. Se-enriched G. frondosa polysaccharide protects against immunosuppression in cyclophosphamide-induced mice via MAPKs signal transduction pathway. Carbohydr Polym. 2018;196:445–456.
  • Kuang H, Xia Y, Yang B, et al. Screening and comparison of the immunosuppressive activities of polysaccharides from the stems of Ephedra sinica Stapf. Carbohydr Polym. 2011;83(2):787–795.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.