171
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Inhibition of neovascularisation in human endothelial cells using anti NRP-1 nanobody fused to truncated form of diphtheria toxin as a novel immunotoxin

, , & ORCID Icon
Pages 230-238 | Received 03 Oct 2020, Accepted 04 Feb 2021, Published online: 03 Mar 2021

References

  • Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575(7782):299–309.
  • Antignani A, FitzGerald D. Immunotoxins: the role of the toxin. Toxins. 2013;5(8):1486–1502.
  • Kreitman RJ. Recombinant immunotoxins containing truncated bacterial toxins for the treatment of hematologic malignancies. BioDrugs. 2009;23(1):1–13.
  • Zuppone S, Fabbrini MS, Vago R. Hosts for hostile protein production: the challenge of recombinant immunotoxin expression. Biomedicines. 2019;7(2):38.
  • Manoukian G, Hagemeister F. Denileukin diftitox: a novel immunotoxin. Expert Opin Biol Ther. 2009;9(11):1445–1451.
  • Geretti E, Klagsbrun M. Neuropilins: novel targets for anti-angiogenesis therapies. Cell Adh Migr. 2007;1(2):56–61.
  • Oh H, Takagi H, Otani A, et al. Selective induction of neuropilin-1 by vascular endothelial growth factor (VEGF): a mechanism contributing to VEGF-induced angiogenesis. Proc Natl Acad Sci USA. 2002;99(1):383–388.
  • Banerjee S, Sengupta K, Dhar K, et al. Breast cancer cells secreted platelet-derived growth factor-induced motility of vascular smooth muscle cells is mediated through neuropilin-1. Mol Carcinog. 2006;45(11):871–880.
  • West DC, Rees CG, Duchesne L, et al. Interactions of multiple heparin binding growth factors with neuropilin-1 and potentiation of the activity of fibroblast growth factor-2. J Biol Chem. 2005;280(14):13457–13464.
  • Glinka Y, Prud’homme GJ. Neuropilin-1 is a receptor for transforming growth factor beta-1, activates its latent form, and promotes regulatory T cell activity. J Leukoc Biol. 2008;84(1):302–310.
  • Herzog B, Pellet-Many C, Britton G, et al. VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation. Mol Biol Cell. 2011;22(15):2766–2776.
  • Gelfand MV, Hagan N, Tata A, et al. Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding. Elife. 2014;3:e03720.
  • Jubb AM, Strickland LA, Liu SD, et al. Neuropilin-1 expression in cancer and development. J Pathol. 2012;226(1):50–60.
  • Tirand L, Frochot C, Vanderesse R, et al. A peptide competing with VEGF165 binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells. J Controlled Release. 2006;111(1–2):153–164.
  • Barr MP, Byrne AM, Duffy AM, et al. A peptide corresponding to the neuropilin-1-binding site on VEGF(165) induces apoptosis of neuropilin-1-expressing breast tumour cells. Br J Cancer. 2005;92(2):328–333.
  • Raskopf E, Vogt A, Standop J, et al. Inhibition of neuropilin-1 by RNA-interference and its angiostatic potential in the treatment of hepatocellular carcinoma. Z Gastroenterol. 2010;48(1):21–27.
  • Jarvis A, Allerston CK, Jia H, et al. Small molecule inhibitors of the neuropilin-1 vascular endothelial growth factor A (VEGF-A) interaction. J Med Chem. 2010;53(5):2215–2226.
  • Ding Y, Zhou J, Wang S, et al. Anti‑neuropilin‑1 monoclonal antibody suppresses the migration and invasion of human gastric cancer cells via Akt dephosphorylation. Exp Ther Med. 2018;16(2):537–546.
  • Naderi S, Roshan R, Ghaderi H, et al. Selection and characterization of specific nanobody against neuropilin-1 for inhibition of angiogenesis. Mol Immunol. 2020;128:56–63.
  • Homayouni V, Ganjalikhani-Hakemi M, Rezaei A, et al. Preparation and characterization of a novel nanobody against T-cell immunoglobulin and mucin-3 (TIM-3). Iranian J Basic Med Sci. 2016;19(11):1201.
  • Sadeghi A, Behdani M, Muyldermans S, et al. Development of a mono-specific anti-VEGF bivalent nanobody with extended plasma half-life for treatment of pathologic neovascularization. Drug Test Anal. 2020;12(1):92–100.
  • Kazemi-Lomedasht F, Muyldermans S, Habibi-Anbouhi M, et al. Design of a humanized anti vascular endothelial growth factor nanobody and evaluation of its in vitro function. Iran J Basic Med Sci. 2018;21(3):260–266.
  • Kazemi-Lomedasht F, Pooshang-Bagheri K, Habibi-Anbouhi M, et al. In vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies. Iran J Basic Med Sci. 2017;20(5):489–496.
  • Bagheri M, Babaei E, Shahbazzadeh D, et al. Development of a recombinant camelid specific diabody against the heminecrolysin fraction of Hemiscorpius lepturus scorpion. Toxin Reviews. 2017;36(1):7–11.
  • Kazemi-Lomedasht F, Behdani M, Habibi-Anbouhi M, et al. Production and characterization of novel camel single domain antibody targeting mouse vascular endothelial growth factor. Monoclon Antib Immunodiagn Immunother. 2016;35(3):167–171.
  • Kazemi-Lomedasht F, Behdani M, Rahimpour A, et al. Selection and characterization of specific Nanobody against human immunoglobulin G. Monoclon Antib Immunodiagn Immunother. 2015;34(3):201–205.
  • Alirahimi E, Ashkiyan A, Kazemi-Lomedasht F, et al. Intrabody targeting vascular endothelial growth factor receptor-2 mediates downregulation of surface localization. Cancer Gene Ther. 2017;24(1):33–37.
  • Ahadi M, Ghasemian H, Behdani M, et al. Oligoclonal selection of nanobodies targeting vascular endothelial growth factor. J Immunotoxicol. 2019;16(1):34–42.
  • Roshan R, Naderi S, Behdani M, et al. Isolation and characterization of nanobodies against epithelial cell adhesion molecule as novel theranostic agents for cancer therapy. Mol Immunol. 2021;129:70–77.
  • Baharlou R, Tajik N, Behdani M, et al. An antibody fragment against human delta-like ligand-4 for inhibition of cell proliferation and neovascularization. Immunopharmacol Immunotoxicol. 2018;40(5):368–374.
  • Karami E, Sabatier J-M, Behdani M, et al. A nanobody-derived mimotope against VEGF inhibits cancer angiogenesis. J Enzyme Inhib Med Chem. 2020;35(1):1233–1239.
  • Mohseni N, Roshan R, Naderi S, et al. In vitro combination therapy of pathologic angiogenesis using anti-vascular endothelial growth factor and anti-neuropilin-1 nanobodies. Iran J Basic Med Sci. 2020;23(10):1335–1339.
  • Azam F, Mehta S, Harris AL. Mechanisms of resistance to antiangiogenesis therapy. Eur J Cancer. 2010;46(8):1323–1332.
  • Ferrara N. Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev. 2010;21(1):21–26.
  • Denkberg G, Lev A, Eisenbach L, et al. Selective targeting of melanoma and APCs using a recombinant antibody with TCR-like specificity directed toward a melanoma differentiation antigen. J Immunol. 2003;171(5):2197–2207.
  • Hu Y, Liu C, Muyldermans S. Nanobody-based delivery systems for diagnosis and targeted tumor therapy. Front Immunol. 2017;8:1442.
  • Khodabakhsh F, Behdani M, Rami A, et al. Single-domain antibodies or nanobodies: a class of next-generation antibodies. Int Rev Immunol. 2018;37(6):316–322.
  • Alirahimi E, Kazemi-Lomedasht F, Shahbazzadeh D, et al. Nanobodies as novel therapeutic agents in envenomation. Biochim Biophys Acta Gen Subj. 2018;1862(12):2955–2965.
  • Srivastava S, Luqman S. Immune-O-Toxins as the magic bullet for therapeutic purposes. Biomed Res Ther. 2015;2(1):169–183.
  • Shafiee F, Aucoin MG, Jahanian-Najafabadi A. Targeted diphtheria toxin-based therapy: a review article. Front Microbiol. 2019;10:2340.
  • Shapira A, Benhar I. Toxin-based therapeutic approaches. Toxins. 2010;2(11):2519–2583.
  • Kreitman RJ. Getting plant toxins to fuse. Leuk Res. 1997;21(10):997–999.
  • Chaudhary VK, FitzGerald DJ, Pastan I. A proper amino terminus of diphtheria toxin is important for cytotoxicity. Biochem Biophys Res Commun. 1991;180(2):545–551.
  • Yamaizumi M, Mekada E, Uchida T, et al. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell. 1978;15(1):245–250.
  • Arnaoutova I, George J, Kleinman HK, et al. The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis. 2009;12(3):267–274.
  • Albini A, Noonan DM, Ferrari N. Molecular pathways for cancer angioprevention. Clin Cancer Res. 2007;13(15):4320–4325.
  • Zhou Q, Kiosses WB, Liu J, et al. Tumor endothelial cell tube formation model for determining anti-angiogenic activity of a tRNA synthetase cytokine. Methods. 2008;44(2):190–195.
  • Kazemi-Lomedasht F, Behdani M, Bagheri KP, et al. Inhibition of angiogenesis in human endothelial cell using VEGF specific nanobody. Mol Immunol. 2015;65(1):58–67.
  • Behdani M, Zeinali S, Karimipour M, et al. Development of VEGFR2-specific nanobody Pseudomonas exotoxin A conjugated to provide efficient inhibition of tumor cell growth. N Biotechnol. 2013;30(2):205–209.
  • Ribatti D. The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mech Dev. 2016;141:70–77.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.