185
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Stevioside inhibits lipopolysaccharide-induced epithelial-to-mesenchymal transition of NRK-52E cells by PPARγ activation

, , & ORCID Icon
Pages 287-294 | Received 05 Aug 2021, Accepted 03 Feb 2022, Published online: 10 Feb 2022

References

  • Yuan Q, Tan RJ, Liu YH. Myofibroblast in kidney fibrosis: origin, activation, and regulation. Adv Exp Med Biol. 2019;1165:253–283.
  • LeBleu VS, Taduri G, O’Connell J, et al. Origin and function of myofibroblasts in kidney fibrosis. Nat Med. 2013;19(8):1047–1053.
  • Mack M, Yanagita M. Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int. 2015;87(2):297–307.
  • Yang R, Li YD, Mehmood S, et al. Polysaccharides from Armillariella tabescens mycelia ameliorate renal damage in type 2 diabetic mice. Int J Biol Macromol. 2020;162:1682–1691.
  • Azushima K, Uneda K, Wakui H, et al. Effects of rikkunshito on renal fibrosis and inflammation in angiotensin II-infused mice. Sci Rep. 2019;9(1):6201.
  • Chou HC, Wen LL, Chang CC, et al. L-carnitine via PPARγ- and Sirt1-dependent mechanisms attenuates epithelial-mesenchymal transition and renal fibrosis caused by perfluorooctanesulfonate. Toxicol Sci. 2017;160(2):217–229.
  • Scirpo R, Fiorotto R, Villani A, et al. Stimulation of nuclear receptor peroxisome proliferator-activated receptor-γ limits NF-κB-dependent inflammation in mouse cystic fibrosis biliary epithelium. Hepatology. 2015;62(5):1551–1562.
  • Lv WS, Booz GW, Fan F, et al. Oxidative stress and renal fibrosis: recent insights for the development of novel therapeutic strategies. Front Physiol. 2018;9(105):105.
  • Chen R, Xue J, Xie ML. Osthole regulates TGF-β1 and MMP-2/9 expressions via activation of PPARα/γ in cultured mouse cardiac fibroblasts stimulated with angiotensin II. J Pharm Pharm Sci. 2013;16(5):732–741.
  • Xu MY, Hu JJ, Shen J, et al. Stat3 signaling activation crosslinking of TGF-β1 in hepatic stellate cell exacerbates liver injury and fibrosis. Biochim Biophys Acta. 2014;1842(11):2237–2245.
  • Samuel P, Ayoob KT, Magnuson BA, et al. Stevia leaf to stevia sweetener: exploring its science, benefits, and future potential. J Nutr. 2018;148:1186.
  • Momtazi-Borojeni AA, Esmaeili SA, Abdollahi E, et al. A review on the pharmacology and toxicology of steviol glycosides extracted from Stevia rebaudiana. Curr Pharm Des. 2017;23(11):1616–1622.
  • Ilic V, Vukmirovic S, Stilinovic N, et al. Insight into anti-diabetic effect of low dose of stevioside. Biomed Pharmacother. 2017;90:216–221.
  • Philippaert K, Pironet A, Mesuere M, et al. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nat Commun. 2017;8:14733.
  • Chan P, Tomlinson B, Chen YJ, et al. A double-blind placebo-controlled study of the effectiveness and tolerability of oral stevioside in human hypertension. Br J Clin Pharmacol. 2000;50(3):215–220.
  • Tirapelli CR, Ambrosio SR, de Oliveira AM, et al. Hypotensive action of naturally occurring diterpenes: a therapeutic promise for the treatment of hypertension. Fitoterapia. 2010;81(7):690–702.
  • Boonkaewwan C, Burodom A. Anti-inflammatory and immunomodulatory activities of stevioside and steviol on colonic epithelial cells. J Sci Food Agric. 2013;93(15):3820–3825.
  • Boonkaewwan C, Ao M, Toskulkao C, et al. Specific immunomodulatory and secretory activities of stevioside and steviol in intestinal cells. J Agric Food Chem. 2008;56(10):3777–3784.
  • Potocnjak I, Broznic D, Kindl M, et al. Stevia and stevioside protect against cisplatin nephrotoxicity through inhibition of ERK1/2, STAT3, and NF-κB activation. Food Chem Toxicol. 2017;107(Pt A):215–225.
  • Melis MS. Stevioside effect on renal function of normal and hypertensive rats. J Ethnopharmacol. 1992;36(3):213–217.
  • Casas-Grajales S, Alvarez-Suarez D, Ramos-Tovar E, et al. Stevioside inhibits experimental fibrosis by down-regulating profibrotic Smad pathways and blocking hepatic stellate cell activation. Basic Clin Pharmacol Toxicol. 2019;124(6):670–680.
  • Wang J, Shen W, Zhang JY, et al. Stevioside attenuates isoproterenol-induced mouse myocardial fibrosis through inhibition of the myocardial NF-κB/TGF-β1/Smad signaling pathway. Food Funct. 2019;10(2):1179–1190.
  • Zhu ZY, Wang F, Jia CH, et al. Apigenin-induced HIF-1α inhibitory effect improves abnormal glucolipid metabolism in AngII/hypoxia-stimulated or HIF-1α-overexpressed H9c2 cells. Phytomedicine. 2019;62:152713.
  • Wang F, Zhou RJ, Zhao X, et al. Apigenin inhibits ethanol-induced oxidative stress and LPS-induced inflammatory cytokine production in cultured rat hepatocytes. J Appl Biomed. 2018;16(1):75–80.
  • Lovisa S, Zeisberg M, Kalluri R. Partial epithelial-to-mesenchymal transition and other new mechanisms of kidney fibrosis. Trends Endocrinol Metab. 2016;27(10):681–695.
  • Chen J, Li DT, Luo E. Telbivudine antagonizes TLR4 to inhibit the epithelial-to-mesenchymal transition in human proximal tubular epithelial cells in vitro. Int Immunopharmacol. 2019;74:105683.
  • Christofides A, Konstantinidou E, Jani C, et al. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism. 2021;114:154338.
  • Lu XY, Zou W, Dong YQ, et al. Anti-renal fibrosis effect of asperulosidic acid via TGF-β1/smad2/smad3 and NF-κB signaling pathways in a rat model of unilateral ureteral obstruction. Phytomedicine. 2019;53:274–285.
  • Ma T-T, Meng X-M. β/Smad and renal fibrosis. Adv Exp Med Biol. 2019;1165:347–364.
  • Pyo MC, Chae SA, Yoo HJ, et al. Ochratoxin a induces epithelial-to-mesenchymal transition and renal fibrosis through TGF-β/Smad2/3 and Wnt1/β-catenin signaling pathways in vitro and in vivo. Arch Toxicol. 2020;94(9):3329–3342.
  • O’Reilly S, Ciechomska M, Cant R, et al. Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. J Biol Chem. 2014;289(14):9952–9960.
  • Choi HI, Ma SK, Bae EH, et al. Peroxiredoxin 5 protects TGF-β induced fibrosis by inhibiting Stat3 activation in rat kidney interstitial fibroblast cells. PLoS One. 2016;11(2):e0149266.
  • Kim HJ, Rho YH, Choi SJ, et al. 15-Deoxy-delta12,14-PGJ2 inhibits IL-6-induced Stat3 phosphorylation in lymphocytes. Exp Mol Med. 2005;37(3):179–185.
  • Liu JS, Zhong Y, Liu GY, et al. Role of Stat3 signaling in control of EMT of tubular epithelial cells during renal fibrosis. Cell Physiol Biochem. 2017;42(6):2552–2558.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.