209
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Luteolin restored Treg/Th17 balance to ameliorate allergic rhinitis in a mouse model

, , , , &
Pages 461-468 | Received 22 May 2022, Accepted 04 Jan 2023, Published online: 22 Mar 2023

References

  • Mattos JL, Woodard CR, Payne SC. Trends in common rhinologic illnesses: analysis of U.S. Healthcare Surveys 1995–2007. Int Forum Allergy Rhinol. 2011;1(1):3–12.
  • Meltzer EO. Allergic rhinitis: burden of illness, quality of life, comorbidities, and control. Immunol Allergy Clin North Am. 2016;36(2):235–248.
  • Bousquet J, Khaltaev N, Cruz AA, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy. 2008;63(Suppl. 86):8–160.
  • He S, Li YJ, Chen J. Clinical features of allergic rhinitis in children of Shanghai, China. Genet Mol Res. 2016;15(2).
  • Khan DA. Allergic rhinitis and asthma: epidemiology and common pathophysiology. Allergy Asthma Proc. 2014;35(5):357–361.
  • Li J, Lin X, Liu X, et al. Baicalin regulates Treg/Th17 cell imbalance by inhibiting autophagy in allergic rhinitis. Mol Immunol. 2020;125:162–171.
  • Fan Y, Yang C, Zhou J, et al. Regulatory effect of glutathione on Treg/Th17 cell balance in allergic rhinitis patients through inhibiting intracellular autophagy. Immunopharmacol Immunotoxicol. 2021;43(1):58–67.
  • Blaiss MS. Allergic rhinitis: direct and indirect costs. Allergy Asthma Proc. 2010;31(5):375–380.
  • Meltzer EO, Bukstein DA. The economic impact of allergic rhinitis and current guidelines for treatment. Ann Allergy Asthma Immunol. 2011;106(2 Suppl.):S12–S16.
  • Liang KL, Yu SJ, Huang WC, et al. Luteolin attenuates allergic nasal inflammation via inhibition of interleukin-4 in an allergic rhinitis mouse model and peripheral blood from human subjects with allergic rhinitis. Front Pharmacol. 2020;11:291.
  • Bai H, Li X, Li H, et al. Biological ingredient complement chemical ingredient in the assessment of the quality of TCM preparations. Sci Rep. 2019;9(1):5853.
  • Wang Y, Guo W, Liu Y, et al. Investigating the protective effect of gross saponins of Tribulus terrestris fruit against ischemic stroke in rat using Metabolomics and Network Pharmacology. Metabolites. 2019;9(10):240.
  • Makino T, Furuta Y, Wakushima H, et al. Anti-allergic effect of Perilla frutescens and its active constituents. Phytother Res. 2003;17(3):240–243.
  • Seo WH, Baek HH. Characteristic aroma-active compounds of Korean Perilla (Perilla frutescens Britton) leaf. J Agric Food Chem. 2009;57(24):11537–11542.
  • Liu J, Wan Y, Zhao Z, et al. Determination of the content of rosmarinic acid by HPLC and analytical comparison of volatile constituents by GC–MS in different parts of Perilla frutescens (L.) Britt. Chem Cent J. 2013;7(1):61.
  • Jeon IH, Kim HS, Kang HJ, et al. Anti-inflammatory and antipruritic effects of luteolin from Perilla (P. frutescens L.) leaves. Molecules. 2014;19(6):6941–6951.
  • Ueda H, Yamazaki C, Yamazaki M. Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens. Biol Pharm Bull. 2002;25(9):1197–1202.
  • Shen ML, Wang CH, Lin CH, et al. Luteolin attenuates airway mucus overproduction via inhibition of the GABAergic system. Sci Rep. 2016;6:32756.
  • Zeng W, Wu C, Dai Y. Regulatory effects of luteolin on airway inflammation in asthmatic rats. Zhonghua Yi Xue Za Zhi. 2014;94(32):2535–2539.
  • Jang TY, Jung AY, Kyung TS, et al. Anti-allergic effect of luteolin in mice with allergic asthma and rhinitis. Cent Eur J Immunol. 2017;42(1):24–29.
  • Lee HJ, Seo HS, Ryu J, et al. Luteolin inhibited the gene expression, production and secretion of MUC5AC mucin via regulation of nuclear factor kappa B signaling pathway in human airway epithelial cells. Pulm Pharmacol Ther. 2015;31:117–122.
  • Kritas SK, Saggini A, Varvara G, et al. Luteolin inhibits mast cell-mediated allergic inflammation. J Biol Regul Homeost Agents. 2013;27(4):955–959.
  • Kang OH, Choi JG, Lee JH, et al. Luteolin isolated from the flowers of Lonicera japonica suppresses inflammatory mediator release by blocking NF-kappaB and MAPKs activation pathways in HMC-1 cells. Molecules. 2010;15(1):385–398.
  • Dong J, Xu O, Wang J, et al. Luteolin ameliorates inflammation and Th1/Th2 imbalance via regulating the TLR4/NF-κB pathway in allergic rhinitis rats. Immunopharmacol Immunotoxicol. 2021;43(3):319–327.
  • Li CW, Lu HG, Chen DH, et al. In vivo and in vitro studies of Th17 response to specific immunotherapy in house dust mite-induced allergic rhinitis patients. PLOS One. 2014;9(3):e91950.
  • Makihara S, Okano M, Fujiwara T, et al. Local expression of interleukin-17a is correlated with nasal eosinophilia and clinical severity in allergic rhinitis. Allergy Rhinol. 2014;5(1):22–27.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods. 2001;25(4):402–408.
  • Bernstein DI, Schwartz G, Bernstein JA. Allergic rhinitis: mechanisms and treatment. Immunol Allergy Clin North Am. 2016;36(2):261–278.
  • Zhou B, Xu G. The mechanism and treatment of nasal obstruction in allergic rhinitis. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2019;33(8):780–785.
  • Erkan K, Bozkurt MK, Artaç H, et al. The role of regulatory T cells in allergic rhinitis and their correlation with IL-10, IL-17 and neopterin levels in serum and nasal lavage fluid. Eur Arch Otorhinolaryngol. 2020;277(4):1109–1114.
  • Chen F, He D, Yan B. Apigenin attenuates allergic responses of ovalbumin-induced allergic rhinitis through modulation of Th1/Th2 responses in experimental mice. Dose Response. 2020;18(1):1559325820904799.
  • Okano M, Fujiwara T, Higaki T, et al. Characterization of pollen antigen-induced IL-31 production by PBMCs in patients with allergic rhinitis. J Allergy Clin Immunol. 2011;127(1):279.e1–11.
  • Yang Q, Li C, Wang W, et al. Infiltration pattern of gammadelta T cells and its association with local inflammatory response in the nasal mucosa of patients with allergic rhinitis. Int Forum Allergy Rhinol. 2019;9(11):1318–1326.
  • Ren M, Tang Q, Chen F, et al. Mahuang Fuzi Xixin decoction attenuates Th1 and Th2 responses in the treatment of ovalbumin-induced allergic inflammation in a rat model of allergic rhinitis. J Immunol Res. 2017;2017:8254324.
  • Bui TT, Kwon DA, Choi DW, et al. Rosae multiflorae fructus extract and its four active components alleviate ovalbumin-induced allergic inflammatory responses via regulation of Th1/Th2 imbalance in BALB/c rhinitis mice. Phytomedicine. 2019;55:238–248.
  • Yan A, Luo G, Zhou Z, et al. Tear osteopontin level and its relationship with local Th1/Th2/Th17/Treg cytokines in children with allergic conjunctivitis. Allergol Immunopathol. 2018;46(2):144–148.
  • Wang Y, Hou XR, Li LH, et al. Acupoint injection improves allergic rhinitis by balancing Th17/Treg in allergic rhinitis rats. Zhen Ci Yan Jiu. 2019;44(4):276–281.
  • Huang X, Chen Y, Zhang F, et al. Peripheral Th17/Treg cell-mediated immunity imbalance in allergic rhinitis patients. Braz J Otorhinolaryngol. 2014;80(2):152–155.
  • Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323–335.
  • Dowling SD, Macian F. Autophagy and T cell metabolism. Cancer Lett. 2018;419:20–26.
  • Farooq MB, Walsh GM. Autophagy and asthma. Clin Exp Allergy. 2016;46(1):7–9.
  • Vomero M, Barbati C, Colasanti T, et al. Autophagy and rheumatoid arthritis: current knowledges and future perspectives. Front Immunol. 2018;9:1577.
  • Lassen KG, Xavier RJ. Mechanisms and function of autophagy in intestinal disease. Autophagy. 2018;14(2):216–220.
  • Liu X, Qin H, Xu J. The role of autophagy in the pathogenesis of systemic lupus erythematosus. Int Immunopharmacol. 2016;40:351–361.
  • Li J, Li Y. Autophagy is involved in allergic rhinitis by inducing airway remodeling. Int Forum Allergy Rhinol. 2019;9(11):1346–1351.
  • Nian JB, Zeng M, Zheng J, et al. Epithelial cells expressed IL-33 to promote degranulation of mast cells through inhibition on ST2/PI3K/mTOR-mediated autophagy in allergic rhinitis. Cell Cycle. 2020;19(10):1132–1142.
  • Mei J, Kong H, Zhao Z, et al. Shufengjiedu capsules protect against neuronal loss in olfactory epithelium and lung injury by enhancing autophagy in rats with allergic rhinitis. Biosci Trends. 2020;13(6):530–538.
  • Wang XD, Zheng M, Lou HF, et al. An increased prevalence of self-reported allergic rhinitis in major Chinese cities from 2005 to 2011. Allergy. 2016;71(8):1170–1180.
  • Hu SJ, Wei P, Kou W, et al. Prevalence and risk factors of allergic rhinitis: a meta-analysis. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2017;31(19):1485–1491.
  • Maejima Y, Isobe M, Sadoshima J. Regulation of autophagy by Beclin 1 in the heart. J Mol Cell Cardiol. 2016;95:19–25.
  • Bresciani A, Spiezia MC, Boggio R, et al. Quantifying autophagy using novel LC3B and p62 TR-FRET assays. PLOS One. 2018;13(3):e0194423.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.