366
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Phloroglucinol possesses anti-inflammatory activities by regulating AMPK/Nrf2/HO-1 signaling pathway in LPS-stimulated RAW264.7 murine macrophages

, &
Pages 571-580 | Received 02 Sep 2022, Accepted 24 Mar 2023, Published online: 11 Apr 2023

References

  • Li YX, Wijesekara I, Li Y, et al. Phlorotannins as bioactive agents from brown algae. Process Biochem. 2011;46(12):2219–2224.
  • Gupta S, Abu-Ghannam N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci Technol. 2011;22(6):315–326.
  • Elnabris K, Elmanama A, Chihadeh W. Antibacterial activity of four marine seaweeds collected from the Coast of Gaza Strip, Palestine. Mesopotamian J Marine Sci. 2013;28(1):81–92.
  • Hong-Yu L, Bin W, Chun-Guang Y, et al. Evaluation of antioxidant activities of five selected brown seaweeds from China. J. Med. Plants Res. 2010;4(23):2557–2565.
  • Ashwini S, Babut S, Saritha MS. Seaweed extracts exhibit anticancer activity against HeLa cell lines. Int J Curr Pharmacol Res. 2016;9(1):114–117.
  • Khan MN, Choi JS, Lee MC, et al. Anti-inflammatory activities of methanol extracts from various seaweed species. J Environ Biol. 2008;29(4):465–469.
  • Ananthi S, Raghavendran HRB, Sunil AG, et al. In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (marine brown alga). Food Chem Toxicol. 2010;48(1):187–192.
  • Cho BO, Yin HH, Park SH, et al. Anti-inflammatory activity of ­myricetin from diospyros lotus through suppression of NF-κB and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide-stimulated RAW264. 7 macrophages. Biosci Biotechnol Biochem. 2016;80(8):1520–1530.
  • Han JM, Lee EK, Gong SY, et al. Sparassis crispa exerts anti-inflammatory activity via suppression of TLR-mediated NF-κB and MAPK signaling pathways in LPS-induced RAW264. 7 macrophage cells. J Ethnopharmacol. 2019;231:10–18.
  • Kim YS, Ahn CB, Je JY. Anti-inflammatory action of high molecular weight mytilus edulis hydrolysates fraction in LPS-induced RAW264. 7 macrophage via NF-κB and MAPK pathways. Food Chem. 2016;202:9–14.
  • Chen CC, Lin MW, Liang CJ, et al. The anti-inflammatory effects and mechanisms of eupafolin in lipopolysaccharide-induced inflammatory responses in RAW264. 7 macrophages. PLOS One. 2016;11(7):e0158662.
  • Wu ML, Ho YC, Lin CY, et al. Heme oxygenase-1 in inflammation and cardiovascular disease. Am J Cardiovasc Dis. 2011;1(2):150.
  • Ahmed SMU, Luo L, Namani A, et al. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis. 2017;1863(2):585–597.
  • Lv H, Yu Z, Zheng Y, et al. Isovitexin exerts anti-inflammatory and anti-oxidant activities on lipopolysaccharide-induced acute lung injury by inhibiting MAPK and NF-κB and activating HO-1/Nrf2 pathways. Int J Biol Sci. 2016;12(1):72–86.
  • Saha S, Buttari B, Panieri E, et al. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules. 2020;25(22):5474.
  • Douglas TE, Dokupil A, Reczyńska K, et al. Enrichment of ­enzymatically mineralized gellan gum hydrogels with phlorotannin-rich ecklonia cava extract seanol® to endow antibacterial properties and promote mineralization. Biomed. Mater. 2016;11(4):045015.
  • Lee JH, Eom SH, Lee EH, et al. In vitro antibacterial and synergistic effect of phlorotannins isolated from edible brown seaweed Eisenia bicyclis against acne-related bacteria. Algae. 2014;29(1):47–55.
  • Kang KA. Cytoprotective effect of triphlorethol-A from Ecklonia cava against oxidative stress-induced cell damage. 제주대학교 대학원. 2009;
  • Abdelhamid A, Lajili S, Elkaibi MA, et al. Optimized extraction, preliminary characterization and evaluation of the in vitro anticancer activity of phlorotannin-rich fraction from the brown seaweed, Cystoseira sedoides. J Aquat Food Prod Technol. 2019;28(9):892–909.
  • Karadeniz F, Kang K-H, Park JW, et al. Anti-HIV-1 activity of phlorotannin derivative 8, 4‴-dieckol from Korean brown alga Ecklonia cava. Biosci Biotechnol Biochem. 2014;78(7):1151–1158.
  • Wang T, Jónsdóttir R, Liu H, et al. Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus. J Agric Food Chem. 2012;60(23):5874–5883.
  • Liu X, Yuan W, Sharma-Shivappa R, et al. Antioxidant activity of phlorotannins from brown algae. Int J Agric Biol Eng. 2017;10(6):184–191.
  • Wijesinghe W, Ahn G, Lee W-W, et al. Anti-inflammatory activity of phlorotannin-rich fermented Ecklonia cava processing by-product extract in lipopolysaccharide-stimulated RAW 264.7 macrophages. J Appl Phycol. 2013;25(4):1207–1213.
  • Jung HA, Jin SE, Ahn BR, et al. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264. 7 macrophages. Food Chem Toxicol. 2013;59:199–206.
  • Li N, Khan SI, Qiu S, et al. Synthesis and anti-inflammatory ­activities of phloroglucinol-based derivatives. Molecules. 2018;23(12):3232.
  • Barbosa M, Lopes G, Ferreres F, et al. Phlorotannin extracts from fucales: marine polyphenols as bioregulators engaged in inflammation-related mediators and enzymes. Algal Res. 2017;28:1–8.
  • Hyung JH, Ahn CB, Kim BI, et al. Involvement of Nrf2-mediated heme oxygenase-1 expression in anti-inflammatory action of chitosan oligosaccharides through MAPK activation in murine macrophages. Eur J Pharmacol. 2016;793:43–48.
  • Moon SW, Ahn CB, Oh Y, et al. Lotus (nelumbo nucifera) seed protein isolate exerts anti-inflammatory and antioxidant effects in LPS-stimulated RAW264. 7 macrophages via inhibiting NF-κB and MAPK pathways, and upregulating catalase activity. Int J Biol Macromol. 2019;134:791–797.
  • Wijesinghe W, Jeon YJ. Biological activities and potential cosmeceutical applications of bioactive components from brown seaweeds: a review. Phytochem Rev. 2011;10(3):431–443.
  • Al-Dulaimi O, Rateb ME, Hursthouse AS, et al. The brown seaweeds of Scotland, their importance and applications. Environments. 2021;8(6):59.
  • Wijesekara I, Yoon NY, Kim SK. Phlorotannins from ecklonia cava (phaeophyceae): biological activities and potential health benefits. Biofactors. 2010;36(6):408–414.
  • Kim AR, Lee MS, Shin TS, et al. Phlorofucofuroeckol a inhibits the LPS-stimulated iNOS and COX-2 expressions in macrophages via inhibition of NF-κB, akt, and p38 MAPK. Toxicol in Vitro. 2011;25(8):1789–1795.
  • Eom SH, Lee EH, Park K, et al. Eckol from Eisenia bicyclis inhibits inflammation through the akt/NF‐κB signaling in Propionibacterium acnes‐induced human keratinocyte hacat cells. J Food Biochem. 2017;41(2):e12312.
  • Sugiura Y, Tanaka R, Katsuzaki H, et al. The anti-inflammatory effects of phlorotannins from Eisenia arborea on mouse ear edema by inflammatory inducers. J Funct Foods. 2013;5(4):2019–2023.
  • Wei R, Lee MS, Lee B, et al. Isolation and identification of anti-inflammatory compounds from ethyl acetate fraction of ecklonia stolonifera and their anti-inflammatory action. J Appl Phycol. 2016;28(6):3535–3545.
  • Dong L, Yin L, Chen R, et al. Anti-inflammatory effect of calycosin glycoside on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells. Gene. 2018;675:94–101.
  • Coleman JW. Nitric oxide in immunity and inflammation. Int Immunopharmacol. 2001;1(8):1397–1406.
  • Yoon SB, Lee YJ, Park SK, et al. Anti-inflammatory effects of Scutellaria baicalensis water extract on LPS-activated RAW 264.7 macrophages. J Ethnopharmacol. 2009;125(2):286–290.
  • Needleman P, Manning P. Interactions between the inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) pathways: implications for therapeutic intervention in osteoarthritis. Osteoarthr Cartil. 1999;7(4):367–370.
  • Hung YL, Fang SH, Wang SC, et al. Corylin protects LPS-induced sepsis and attenuates LPS-induced inflammatory response. Sci Rep. 2017;7(1):1–11.
  • Abraham NG, Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev. 2008;60(1):79–127.
  • Li H, Shi Y, Wang X, et al. Piceatannol alleviates inflammation and oxidative stress via modulation of the Nrf2/HO-1 and NF-κB pathways in diabetic cardiomyopathy. Chem Biol Interact. 2019;310:108754.
  • Otterbein LE, Soares MP, Yamashita K, et al. Heme oxygenase-1: unleashing the protective properties of heme. Trend Immunol. 2003;24(8):449–455.
  • Paine A, Eiz-Vesper B, Blasczyk R, et al. Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem Pharmacol. 2010;80(12):1895–1903.
  • Pi SH, Jeong GS, Oh HW, et al. Heme oxygenase‐1 mediates nicotine‐and lipopolysaccharide‐induced expression of cyclooxygenase‐2 and inducible nitric oxide synthase in human periodontal ligament cells. J Periodont Res. 2010;45(2):177–183.
  • Shie PH, Wang SY, Lay HL, et al. 4, 7-Dimethoxy-5-methyl-1, 3-benzodioxole from antrodia camphorata inhibits LPS-induced inflammation via suppression of NF-κB and induction HO-1 in RAW264. 7 cells. Int Immunopharmacol. 2016;31:186–194.
  • Yang Z, Kahn BB, Shi H, et al. Macrophage α1 AMP-activated protein kinase (α1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J Biol Chem. 2010;285(25):19051–19059.
  • Joo MS, Kim WD, Lee KY, et al. AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550. Mol Cell Biol. 2016;36(14):1931–1942.
  • Seo MS, Kim JH, Kim HJ, et al. Honokiol activates the LKB1–AMPK signaling pathway and attenuates the lipid accumulation in hepatocytes. Toxicol Appl Pharmacol. 2015;284(2):113–124.
  • Li D, Liu F, Wang X, et al. Apple polyphenol extract alleviates high-fat-diet-induced hepatic steatosis in male C57BL/6 mice by targeting LKB1/AMPK pathway. J. Agric. Food Chem. 2019;67(44):12208–12218.
  • Iseli TJ, Turner N, Zeng XY, et al. Activation of AMPK by bitter melon triterpenoids involves CaMKKβ. PLoS One. 2013;8(4):e62309.
  • Kim J, Yang G, Kim Y, et al. AMPK activators: mechanisms of action and physiological activities. Exp Mol Med. 2016;48(4):e224–e224.
  • Lee YS, Kim WS, Kim KH, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes. 2006;55(8):2256–2264.
  • Kirchner J, Brüne B, Namgaladze D. AICAR inhibits NFκB DNA binding independently of AMPK to attenuate LPS-triggered inflammatory responses in human macrophages. Sci Rep. 2018;8(1):1–9.
  • Kong L, Zhang H, Lu C, et al. AICAR, an AMP-activated protein kinase activator, ameliorates acute pancreatitis-associated liver injury partially through Nrf2-mediated antioxidant effects and inhibition of NLRP3 inflammasome activation. Front. Pharmacol. 2021;12:724514.
  • Sanders MJ, Grondin PO, Hegarty BD, et al. Investigating the mechanism for AMP activation of the AMP-activated protein kinase Cascade. Biochem J. 2007;403(1):139–148.
  • Woods A, Dickerson K, Heath R, et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005;2(1):21–33.
  • Zhou F, Wang M, Ju J, et al. Schizandrin a protects against cerebral ischemia-reperfusion injury by suppressing inflammation and oxidative stress and regulating the AMPK/Nrf2 pathway regulation. Am J Translat Res. 2019;11(1):199.
  • Zhu Y, Wang C, Luo J, et al. The protective role of zingerone in a murine asthma model via activation of the AMPK/Nrf2/HO-1 pathway. Food Funct. 2021;12(7):3120–3131.
  • Dong Q, Li Y, Chen J, et al. Azilsartan suppressed LPS-induced inflammation in U937 macrophages through suppressing oxidative stress and inhibiting the TLR2/MyD88 signal pathway. ACS Omega. 2021;6(1):113–118.
  • Ryter SW, Choi AM. Heme oxygenase-1: redox regulation of a stress protein in lung and cell culture models. Antioxid Redox Signal. 2005;7(1–2):80–91.
  • Zhao Y, Hu X, Liu Y, et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer. 2017;16(1):1–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.