190
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Sirtuins: exploring next-gen therapeutics in the pathogenesis osteoporosis and associated diseases

, &
Pages 277-301 | Received 05 Jun 2023, Accepted 30 Jan 2024, Published online: 19 Feb 2024

References

  • Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO study group. Osteoporos Int. 1994;4(6):368–381. doi:10.1007/BF01622200.
  • Yoo JH, Moon SH, Ha YC, et al. Osteoporotic fracture: 2015 position statement of the Korean Society for Bone and Mineral Research. J Bone Metab. 2015;22(4):175–181. doi:10.11005/jbm.2015.22.4.1758.
  • Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(Suppl 3):S131–S139. doi:10.2215/CJN.041512068.
  • Cooper C, Campion G, Melton LJ.3rd. Hip fractures in the elderly: a world-wide projection. Osteoporos Int. 1992;2(6):285–289. doi:10.1007/BF01623184.
  • Randell A, Sambrook PN, Nguyen TV, et al. Direct clinical and welfare costs of osteoporotic fractures in elderly men and women. Osteoporos Int. 1995;5(6):427–432. doi:10.1007/BF01626603.
  • Melton LJ, 3rd, Chrischilles EA, Cooper C, et al. Perspective how many women have osteoporosis? J Bone Miner Res. 1992;7(9):1005–1010. doi:10.1002/jbmr.5650070902.
  • Reginster JY, Burlet N. Osteoporosis: a still increasing prevalence. Bone. 2006;38(2 Suppl 1):S4–S9. doi:10.1016/j.bone.2005.11.0247.
  • Guglielmi G. Osteoporosis and bone densitometry measurements. Berlin: Springer; 2013.
  • Wright NC, Looker AC, Saag KG, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014;29(11):2520–2526. doi:10.1002/jbmr.22692.
  • Hagino H, Furukawa K, Fujiwara S, et al. Recent trends in the incidence and lifetime risk of hip fracture in Tottori, Japan. Osteoporos Int. 2009;20(4):543–548. doi:10.1007/s00198-008-0685-07.
  • Cosman F, de Beur SJ, LeBoff MS, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–2381. doi:10.1007/s00198-014-2794-28.
  • Kanis JA. Assessment of osteoporosis at the primary health-care level. Tech Rep. 2007;12(4):390–406.
  • Li Q, Cheng JC-Y, Jiang Q, et al. Role of sirtuins in bone biology: potential implications for novel therapeutic strategies for osteoporosis. Aging Cell. 2021;20(2):e13301. doi:10.1111/acel.133015.
  • Santoro N, Epperson CN, Mathews SB. Menopausal symptoms and their management. Endocrinol Metab Clin North Am. 2015;44(3):497–515. doi:10.1016/j.ecl.2015.05.0019.
  • Rizzoli R, Bruyere O, Cannata-Andia JB, et al. Management of osteoporosis in the elderly. Curr Med Res Opin. 2009;25(10):2373–2387. doi:10.1185/030079909031692621.
  • Leslie WD, Morin SN. Osteoporosis epidemiology 2013: implications for diagnosis, risk assessment, and treatment. Curr Opin Rheumatol. 2014;26(4):440–446. doi:10.1097/BOR.00000000000000642.
  • Jeremiah MP, Unwin BK, Greenawald MH, et al. Diagnosis and management of osteoporosis. Am Fam Physician. 2015;92(4):261–268.1.
  • Tu KN, Lie JD, Wan CK, et al. Osteoporosis: a review of treatment options. P T. 2018;43(2):92–104.6
  • North American Menopause Society. Management of osteoporosis in postmenopausal women: 2006 position statement of the North American menopause society. Menopause. 2006;13(3):340–369. doi:10.1097/01.gme.0000222475.93345.b3.1.
  • Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest. 2005;115(12):3318–3325. doi:10.1172/JCI270715.
  • Kawamata A, Iihara M, Okamoto T, et al. Bone mineral density before and after surgical cure of Cushing’s syndrome due to adrenocortical adenoma: prospective study. World J Surg. 2008;32(5):890–896. doi:10.1007/s00268-007-9394-72.
  • Buckley L, Guyatt G, Fink HA, et al. 2017 American College of Rheumatology guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Rheumatol. 2017;69(8):1521–1537. doi:10.1002/art.401373.
  • Ro C, Cooper O. Bisphosphonate drug holiday: choosing appropriate candidates. Curr Osteoporos Rep. 2013;11(1):45–51. doi:10.1007/s11914-012-0129-9.5.
  • Lin JT, Lane JM. Osteoporosis: a review. Clin Orthop Relat Res. 2004;425(425):126–134.7.
  • Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003;423(6937):349–355. 15doi: 10.1038/nature016604.
  • Li X, Wang L, Huang B, et al. Targeting actin-bundling protein L-plastin as an anabolic therapy for bone loss. Sci Adv. 2020;6(47):eabb7135. doi:10.1126/sciadv.abb71358.
  • Shanks G, Sharma D, Mishra V. Prevention and treatment of osteoporosis in women. Obstet Gynaecol Reprod Med. 2019;29(7):201–206. doi:10.1016/j.ogrm.2019.04.001.
  • Guarente L. Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol. 2007;72(1):483–488. doi:10.1101/sqb.2007.72.0248.
  • Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol. 2010;5(1):253–295. doi:10.1146/annurev.pathol.4.110807.0922501.
  • Nakagawa T, Guarente L. SnapShot: sirtuins, NAD, and aging. Cell Metab. 2014;20(1):192–192.e1. doi:10.1016/j.cmet.2014.06.0018.
  • Choudhary C, Weinert BT, Nishida Y, et al. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol. 2014;15(8):536–550. doi:10.1038/nrm38419.
  • Wagner GR, Hirschey MD. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol Cell. 2014;54(1):5–16. doi:10.1016/j.molcel.2014.03.0274.
  • Haigis MC, Guarente LP. Mammalian sirtuins–emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006;20(21):2913–2921. doi:10.1101/gad.14675062.
  • Bonkowski MS, Sinclair DA. Slowing ageing by design: the rise of NAD + and sirtuin-activating compounds. Nat Rev Mol Cell Biol. 2016;17(11):679–690. doi:10.1038/nrm.2016.931.
  • Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425(6954):191–196. 11 doi: 10.1038/nature019607.
  • Kane AE, Sinclair DA. Sirtuins and NAD + in the development and treatment of metabolic and cardiovascular diseases. Circ Res. 2018;123(7):868–885. doi:10.1161/CIRCRESAHA.118.3124982.
  • Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5(6):493–506. doi:10.1038/nrd20600.
  • Baur JA, Ungvari Z, Minor RK, et al. Sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov. 2012;11(6):443–461. doi:10.1038/nrd37386.
  • Novelle MG, Wahl D, Diéguez C, et al. Resveratrol supplementation: where are we now and where should we go? Ageing Res Rev. 2015;21:1–15. doi:10.1016/j.arr.2015.01.0021.
  • Kulkarni SS, Cantó C. The molecular targets of resveratrol. Biochim Biophys Acta. 2015;1852(6):1114–1123. doi:10.1016/j.bbadis.2014.10.005.
  • Knight CM, Gutierrez-Juarez R, Lam TK, et al. Mediobasal hypothalamic SIRT1 is essential for resveratrol’s effects on insulin action in rats. Diabetes. 2011;66(12):3143–3144. doi:10.2337/db10-09878.
  • Price NL, Gomes AP, Ling AJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675–690. doi:10.1016/j.cmet.2012.04.0030.
  • Zhao M, Ko SY, Garrett IR, et al. The polyphenol resveratrol promotes skeletal growth in mice through a sirtuin 1-bone morphogenic protein 2 longevity axis. Br J Pharmacol. 2018;175(21):4183–4192. doi:10.1111/bph.144773.
  • Stegen S, Stockmans I, Moermans K, et al. Osteocytic oxygen sensing controls bone mass through epigenetic regulation of sclerostin. Nat Comm. 2018;9(1):2557.
  • Bäckesjö CM, Li Y, Lindgren U, et al. Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. J Bone Miner Res. 2006;21(7):993–1002. doi:10.1359/jbmr.0604150.
  • Zhou H, Shang L, Li X, et al. Removal notice to "resveratrol augments the canonical wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells". Exp Cell Res. 2021;404(1):112609. doi:10.1016/j.yexcr.2021.1126095.
  • Shakibaei M, Buhrmann C, Mobasheri A. Resveratrol-mediated SIRT-1 interactions with p300 modulate receptor activator of NF-kappaB ligand (RANKL) activation of NF-kappaB signaling and inhibit osteoclastogenesis in bone-derived cells. J Biol Chem. 2011;286(13):11492–11505. doi:10.1074/jbc.M110.1987132.
  • Kim HN, Han L, Iyer S, et al. Sirtuin1 suppresses osteoclastogenesis by deacetylating FoxOs. Mol Endocrinol. 2015;29(10):1498–1509. doi:10.1210/me.2015-1133.
  • He X, Andersson G, Lindgren U, et al. Resveratrol prevents RANKL-induced osteoclast differentiation of murine osteoclast progenitor RAW 264.7 cells through inhibition of ROS production. Biochem Biophys Res Commun. 2010;401(3):356–362. doi:10.1016/j.bbrc.2010.09.0537.
  • Gurt I, Artsi H, Cohen-Kfir E, et al. The Sirt1 activators SRT2183 and SRT3025 inhibit RANKL-induced osteoclastogenesis in bone marrow-derived macrophages and down-regulate Sirt3 in Sirt1 null cells. PLoS One. 2015;10(7):e0134391. doi:10.1371/journal.pone.01343914.
  • Almeida M, Porter RM. Sirtuins and FoxOs in osteoporosis and osteoarthritis. Bone. 2019;121:284–292. doi:10.1016/j.bone.2019.01.0184.
  • Zainabadi K, Liu CJ, Caldwell ALM, et al. SIRT1 is a positive regulator of in vivo bone mass and a therapeutic target for osteoporosis. PLoS One. 2017;12(9):e0185236. doi:10.1371/journal.pone.01852366.
  • Pearson KJ, Baur JA, Lewis KN, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008;8(2):157–168. doi:10.1016/j.cmet.2008.06.0113.
  • Herranz D, Muñoz-Martin M, Cañamero M, et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun. 2010;1(1):3. doi:10.1038/ncomms10015.
  • Momken I, Stevens L, Bergouignan A, et al. Resveratrol prevents the wasting disorders of mechanical unloading by acting as a physical exercise mimetic in the rat. FASEB J. 2011;25(10):3646–3660. doi:10.1096/fj.10-1772952.
  • Su JL, Yang CY, Zhao M, et al. Forkhead proteins are critical for bone morphogenetic protein-2 regulation and anti-tumor activity of resveratrol. J Biol Chem. 2007;282(27):19385–19398. doi:10.1074/jbc.M7024522007.
  • Artsi H, Cohen-Kfir E, Gurt I, et al. The Sirtuin1 activator SRT3025 down-regulates sclerostin and rescues ovariectomy-induced bone loss and biomechanical deterioration in female mice. Endocrinol. 2014;155(9):3508–3515. doi:10.1210/en.2014-13345.
  • Ornstrup MJ, Harsløf T, Kjær TN, et al. Resveratrol increases bone mineral density and bone alkaline phosphatase in obese men: a randomized placebo-controlled trial. J Clin Endocrinol Metab. 2014;99(12):4720–4729. doi:10.1210/jc.2014-27994.
  • Zainabadi K. Drugs targeting SIRT1, a new generation of therapeutics for osteoporosis and other bone related disorders? Pharmacol Res. 2019;143:97–105. doi:10.1016/j.phrs.2019.03.0076.
  • Cheng HL, Mostoslavsky R, Saito SI, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A. 2003;100(19):10794–10799. doi:10.1073/pnas.1934713100.
  • Lemieux ME, Yang X, Jardine K, et al. The Sirt1 deacetylase modulates the insulin-like growth factor signaling pathway in mammals. Mech Aging Dev. 2005;126(10):097–105.
  • McBurney MW, Yang X, Jardine K, et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol. 2003;23(1):38–54. doi:10.1128/MCB.23.1.38-54.20039.
  • Mercken EM, Mitchell SJ, Martin-Montalvo A, et al. SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell. 2014;13(5):787–796. doi:10.1111/acel.122205.
  • Cohen-Kfir E, Artsi H, Levin A, et al. Sirt1 is a regulator of bone mass and a repressor of sost encoding for sclerostin, a bone formation inhibitor. Endocrinol. 2011;152(12):4514–4524. doi:10.1210/en.2011-11285.
  • Kolthur-Seetharam U, Teerds K, de Rooij DG, et al. The histone deacetylase SIRT1 controls male fertility in mice through regulation of hypothalamic-pituitary gonadotropin signaling. Biol Reprod. 2009;80(2):384–391. doi:10.1095/biolreprod.108.0701933.
  • Toorie AM, Cyr NE, Steger JS, et al. The nutrient and energy sensor Sirt1 regulates the hypothalamic-pituitary-adrenal (HPA) axis by altering the production of the prohormone convertase 2 (PC2) essential in the maturation of corticotropin-releasing hormone (CRH) from its prohormone in male rats. J Biol Chem. 2016;291(11):5844–5859. doi:10.1074/jbc.M115.6752641.
  • Elbaz A, Rivas D, Duque G. Effect of estrogens on bone marrow adipogenesis and Sirt1 in aging C57BL/6J mice. Biogerontol. 2009;10(6):747–755. doi:10.1007/s10522-009-9221-75.
  • Shakibaei M, Shayan P, Busch F, et al. Resveratrol mediated modulation of sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: potential role of Runx2 deacetylation. PLoS One. 2012;7(4):e35712. doi:10.1371/journal.pone.00357124.
  • Wang X, Chen L, Peng W. Protective effects of resveratrol on osteoporosis via activation of the SIRT1-NF-κB signaling pathway in rats. Exp Ther Med. 2017;14(5):5032–5038. doi:10.3892/etm.2017.51470.
  • Edwards JR, Perrien DS, Fleming N, et al. Silent information regulator (sir)T1 inhibits NF-κB signaling to maintain normal skeletal remodeling. J Bone Miner Res. 2013;28(4):960–969. doi:10.1002/jbmr.18246.
  • Simic P, Zainabadi K, Bell E, et al. SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating β‐catenin. EMBO Mol Med. 2013;5(3):430–440. doi:10.1002/emmm.201201606.
  • Iyer S, Han L, Bartell SM, et al. Sirtuin1 (Sirt1) promotes cortical bone formation by preventing β-catenin sequestration by FoxO transcription factors in osteoblast progenitors. J Biol Chem. 2014;289(35):24069–24078. doi:10.1074/jbc.M114.5618039.
  • Elangovan S, Ramachandran S, Venkatesan N, et al. SIRT1 is essential for oncogenic signaling by estrogen/estrogen receptor α in breast cancer. Cancer Res. 2011;71(21):6654–6664. doi:10.1158/0008-5472.CAN-11-14469.
  • Yu EJ, Kim SH, Heo K, et al. Reciprocal roles of DBC1 and SIRT1 in regulating estrogen receptor α activity and co-activator synergy. Nucleic Acids Res. 2011;39(16):6932–6943. doi:10.1093/nar/gkr3472.
  • Yoon DS, Choi Y, Jang Y, et al. SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells. 2014;32(12):3219–3231. doi:10.1002/stem.18113.
  • Jin X, Kang X, Zhao L, et al. Cartilage ablation of Sirt1 causes inhibition of growth plate chondrogenesis by hyperactivation of mTORC1 signaling. Endocrinol. 2019;160(12):3001–3017. doi:10.1210/en.2019-004275.
  • Dvir-Ginzberg M, Gagarina V, Lee EJ, et al. Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J Biol Chem. 2008;283(52):36300–36310. doi:10.1074/jbc.M8031962007.
  • Hong EH, Lee SJ, Kim JS, et al. Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J Biol Chem. 2010;285(2):1283–1295. doi:10.1074/jbc.M109.0586282.
  • Fujita N, Matsushita T, Ishida K, et al. Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions. J Orthop Res. 2011;29(4):511–515. doi:10.1002/jor.212840.
  • Takayama K, Ishida K, Matsushita T, et al. SIRT1 regulation of apoptosis of human chondrocytes. Arthritis Rheum. 2009;60(9):2731–2740. doi:10.1002/art.248640.
  • Matsuzaki T, Matsushita T, Takayama K, et al. Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice. Ann Rheum Dis. 2014;73(7):1397–1404. doi:10.1136/annrheumdis-2012-2026208.
  • Shtaif B, Bar-Maisels M, Gabet Y, et al. Cartilage -specific knockout of Sirt1 significantly reduces bone quality and catch-up growth efficiency. Bone. 2020;138:115468. doi:10.1016/j.bone.2020.1154683.
  • Sun W, Qiao W, Zhou B, et al. Overexpression of Sirt1 in mesenchymal stem cells protects against bone loss in mice by FOXO3a deacetylation and oxidative stress inhibition. Metabolism. 2018;88:61–71. doi:10.1016/j.metabol.2018.06.0060.
  • Wang H, Hu Z, Wu J, et al. Sirt1 promotes osteogenic differentiation and increases alveolar bone mass via Bmi1 activation in mice. J Bone Miner Res. 2019;34(6):1169–1181. doi:10.1002/jbmr.36778.
  • El-Haj M, Gurt I, Cohen-Kfir E, et al. Reduced Sirtuin1 expression at the femoral neck in women who sustained an osteoporotic hip fracture. Osteoporos Int. 2016;27(7):2373–2378. doi:10.1007/s00198-016-3536-43.
  • Abdelmohsen K, Pullmann R, Jr, Lal A, et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell. 2007;25(4):543–557. doi:10.1016/j.molcel.2007.01.0117.
  • Zhang J, Lazarenko OP, Kang J, et al. Feeding blueberry diets to young rats dose-dependently inhibits bone resorption through suppression of RANKL in stromal cells. PLoS On. 2013;8(8):e70438. doi:10.1371/journal.pone.00704381.
  • Kumar R, Mohan N, Upadhyay AD, et al. Identification of serum sirtuins as novel noninvasive protein markers for frailty. Aging Cell. 2014;13(6):975–980. doi:10.1111/acel.122609.
  • Yang G, Hamadeh IS, Katz J, et al. SIRT1/HERC4 locus associated with Bisphosphonate-Induced osteonecrosis of the jaw: an Exome-Wide association analysis. J Bone Miner Res. 2018;33(1):91–98. doi:10.1002/jbmr.32854.
  • Abed É, Delalandre A, Lajeunesse D. Beneficial effect of resveratrol on phenotypic features and activity of osteoarthritic osteoblasts. Arthritis Res Ther. 2017;19(1):151. doi:10.1186/s13075-017-1365-26.
  • Louvet L, Leterme D, Delplace S, et al. Sirtuin 1 deficiency decreases bone mass and increases bone marrow adiposity in a mouse model of chronic energy deficiency. Bone. 2020;136:115361. doi:10.1016/j.bone.2020.115361.9.
  • Domazetovic V, Marcucci G, Falsetti I, et al. Blueberry juice. Antioxidants protect osteogenic activity against oxidative stress and improve long-term activation of the mineralization process in human osteoblast-like SaOS-2 cells: involvement of SIRT1. Antioxidants (Basel). 2020;9(2):125. doi:10.3390/antiox9020125.9.
  • Kim KM, Wagle S, Moon YJ, et al. Interferon β protects against avascular osteonecrosis through interleukin 6 inhibition and silent information regulator transcript-1 upregulation. Oncotarget. 2017;9(3):3562–3575. doi:10.18632/oncotarget.233376.
  • Matsuda Y, Minagawa T, Okui T, et al. Resveratrol suppresses the alveolar bone resorption induced by artificial trauma from occlusion in mice. Oral Dis. 2018;24(3):412–421. doi:10.1111/odi.12785.
  • Sugatani T, Agapova O, Malluche HH, et al. SIRT6 deficiency culminates in low-turnover osteopenia. Bone. 2015;81:168–177. doi:10.1016/j.bone.2015.07.0180.
  • Fei Y, Shimizu E, McBurney MW, et al. Sirtuin 1 is a negative regulator of parathyroid hormone stimulation of matrix metalloproteinase 13 expression in osteoblastic cells: role of sirtuin 1 in the action of PTH on osteoblasts. J Biol Chem. 2015;290(13):8373–8382. doi:10.1074/jbc.M114.6027635.
  • Liu L, Gu H, Liu H, et al. Protective effect of resveratrol against IL-1β-induced inflammatory response on human osteoarthritic chondrocytes partly via the TLR4/MyD88/NF-κB signaling pathway: an "in vitro study". Int J Mol Sci. 2014;15(4):6925–6940. doi:10.3390/ijms150469253.
  • Kim HS, Vassilopoulos A, Wang RH, et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell. 2011;20(4):487–499. doi:10.1016/j.ccr.2011.09.0044.
  • Beirowski B, Gustin J, Armour SM, et al. Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein par-3/atypical protein kinase C (aPKC) signaling. Proc Natl Acad Sci U S A. 2011;108(43):E952–961. doi:10.1073/pnas.1104969108.0.
  • Jing Y, Zhou Y, Zhou F, et al. SIRT2 deficiency prevents age-related bone loss in rats by inhibiting osteoclastogenesis. Cell Mol Biol (Noisy-le-Grand). 2019;65(7):66–71. doi:10.14715/cmb/2019.65.7.120.
  • Guo Z, He E, Wang D, et al. Targeting a novel liver-bone communication by SIRT2 for osteoporosis treatment. Preprint. 2022.
  • Bellizzi D, Rose G, Cavalcante P, et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics. 2005;85(2):258–263. doi:10.1016/j.ygeno.2004.11.0034.
  • Rose G, Dato S, Altomare K, et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol. 2003;38(10):1065–1070. doi:10.1016/s0531-5565(03)00209-29.
  • Lombard DB, Alt FW, Cheng HL, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol. 2007;27(24):8807–8814. doi:10.1128/MCB.01636-071.
  • McDonnell E, Peterson BS, Bomze HM, et al. SIRT3 regulates progression and development of diseases of aging. Trends Endocrinol Metab. 2015;26(9):486–492. doi:10.1016/j.tem.2015.06.0017.
  • van de Ven RAH, Santos D, Haigis MC. Mitochondrial sirtuins and molecular mechanisms of aging. Trends Mol Med. 2017;23(4):320–331. doi:10.1016/j.molmed.2017.02.0056.
  • Gao J, Feng Z, Wang X, et al. SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress. Cell Death Differ. 2018;25(2):229–240. doi:10.1038/cdd.2017.1442.
  • Huh JE, Shin JH, Jang ES, et al. Sirtuin 3 (SIRT3) maintains bone homeostasis by regulating AMPK-PGC-1β axis in mice. Sci Rep. 2016;6(1):22511. doi:10.1038/srep225115.
  • Ho L, Wang L, Roth TM, et al. Sirtuin-3 promotes adipogenesis, osteoclastogenesis, and bone loss in aging male mice. Endocrinol. 2017;158(9):2741–2753. doi:10.1210/en.2016-17391.
  • Chen Y, Fu LL, Wen X, et al. Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function in cancer. Cell Death Dis. 2014;5(2):e1047–e1047. doi:10.1038/cddis.2014.149.
  • Tseng AH, Shieh SS, Wang DL. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med. 2013;63:222–234. doi:10.1016/j.freeradbiomed.2013.05.0026.
  • Wang S, Zhang J, Deng X, et al. Advances in characterization of SIRT3 deacetylation targets in mitochondrial function. Biochimie. 2020;179:1–13. doi:10.1016/j.biochi.2020.08.0217.
  • Rahman M, Nirala NK, Singh A, et al. Drosophila Sirt2/mammalian SIRT3 deacetylates ATP synthase β and regulates complex V activity. J Cell Biol. 2014;206(2):289–305. doi:10.1083/jcb.2014041184.
  • Vassilopoulos A, Pennington JD, Andresson T, et al. SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress. Antioxid Redox Signal. 2014;21(4):551–564. doi:10.1089/ars.2013.5420.0.
  • Hirschey MD, Shimazu T, Capra JA, et al. SIRT1 and SIRT3 deacetylate homologous substrates: aceCS1,2 and HMGCS1,2. Aging (Albany NY). 2011;3(6):635–642. doi:10.18632/aging.1003397.
  • Finley LW, Haas W, Desquiret-Dumas V, et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One. 2011;6(8):e23295. doi:10.1371/journal.pone.0023295.
  • Nogueiras R, Habegger KM, Chaudhary N, et al. Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev. 2012;92(3):1479–1514. doi:10.1152/physrev.00022.20111.
  • Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A. 2008;105(38):14447–14452. doi:10.1073/pnas.08037901051.
  • Shi T, Wang F, Stieren E, et al. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem. 2005;280(14):13560–13567. doi:10.1074/jbc.M4146702000.
  • Sundaresan NR, Gupta M, Kim G, et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009;119(9):2758–2771. doi:10.1172/JCI391621.
  • Xie X, Wang L, Zhao B, et al. SIRT3 mediates decrease of oxidative damage and prevention of ageing in porcine fetal fibroblasts. Life Sci. 2017;177:41–48. doi:10.1016/j.lfs.2017.01.010.
  • He J, Liu X, Su C, et al. Inhibition of mitochondrial oxidative damage improves reendothelialization capacity of endothelial progenitor cells via SIRT3 (sirtuin 3)-enhanced SOD2 (superoxide dismutase 2) deacetylation in hypertension. Arterioscler Thromb Vasc Biol. 2019;39(8):1682–1698. doi:10.1161/ATVBAHA.119.3126133.
  • Ploumi C, Daskalaki I, Tavernarakis N. Mitochondrial biogenesis and clearance: a balancing act. FEBS J. 2017;284(2):183–195. doi:10.1111/febs.138201.
  • Wang S, Deng Z, Ma Y, et al. The role of autophagy and mitophagy in bone metabolic disorders. Int J Biol Sci. 2020;16(14):2675–2691. doi:10.7150/ijbs.466274.
  • Li Y, Ma Y, Song L, et al. SIRT3 deficiency exacerbates p53/parkin-mediated mitophagy inhibition and promotes mitochondrial dysfunction: implication for aged hearts. Int J Mol Med. 2018;41(6):3517–3526. doi:10.3892/ijmm.2018.35556.
  • Yu W, Gao B, Li N, et al. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: role of Foxo3A-parkin-mediated mitophagy. Biochim Biophys Acta Mol Basis Dis. 2017;1863(8):1973–1983. doi:10.1016/j.bbadis.2016.10.0218.
  • Qiao A, Wang K, Yuan Y, et al. Sirt3-mediated mitophagy protects tumor cells against apoptosis under hypoxia. Oncotarget. 2016;7(28):43390–43400. doi:10.18632/oncotarget.97178.
  • He Y, Wu Z, Xu L, et al. The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis. Cell Mol Life Sci. 2020;77(19):3729–3743. doi:10.1007/s00018-020-03497-94.
  • Rached MT, Kode A, Xu L, et al. FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab. 2010;11(2):147–160. doi:10.1016/j.cmet.2010.01.001.2.
  • Li Y, Yu C, Shen G, et al. Sirt3-MnSOD axis represses nicotine-induced mitochondrial oxidative stress and mtDNA damage in osteoblasts. Acta Biochim Biophys Sin. 2015;47(4):306–312. doi:10.1093/abbs/gmv013. Epub 2015 Mar 10.3.
  • ]Ding Y, Yang H, Wang Y, et al. Sirtuin 3 is required for osteogenic differentiation through maintenance of PGC-1ɑ-SOD2-mediated regulation of mitochondrial function. Int J Biol Sci. 2017;13(2):254–264. doi:10.7150/ijbs.170537.
  • Tautzenberger A, Kovtun A, Ignatius A. Nanoparticles and their potential for application in bone. Int J Nanomedicine. 2012;7:4545–4557. doi:10.2147/IJN.S341272.
  • Chen Z, Wang Y, Ba T, et al. Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicol Lett. 2014;226(3):314–319. doi:10.1016/j.toxlet.2014.02.0207.
  • Wang S, Yang J, Lin T, et al. Excessive production of mitochondrion-derived reactive oxygen species induced by titanium ions leads to autophagic cell death of osteoblasts via the SIRT3/SOD2 pathway. Mol Med Rep. 2020;22(1):257–264. doi:10.3892/mmr.2020.110946.
  • Niska K, Pyszka K, Tukaj C, et al. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells. Int J Nanomedicine. 2015;10:1095–1107. doi:10.2147/IJN.S735574.
  • Zheng K, Bai J, Li N, et al. Protective effects of sirtuin 3 on titanium particle-induced osteogenic inhibition by regulating the NLRP3 inflammasome via the GSK-3β/β-catenin signalling pathway. Bioact Mater. 2021;6(10):3343–3357. doi:10.1016/j.bioactmat.2021.02.0395.
  • Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21(2):115–137. doi:10.1210/edrv.21.2.03951.
  • Farr JN, Almeida M. The spectrum of fundamental basic science discoveries contributing to organismal aging. J Bone Miner Res. 2018;33(9):1568–1584. doi:10.1002/jbmr.35641.
  • Kim H, Lee YD, Kim HJ, et al. SOD2 and Sirt3 control osteoclastogenesis by regulating mitochondrial ROS. J Bone Miner Res. 2017;32(2):397–406. doi:10.1002/jbmr.29744.
  • Wang F, Guo J, Wang S, et al. B‐cell lymphoma‐3 controls mesenchymal stem cell commitment and senescence during skeletal aging. Clin Transl Med. 2022;12(7):e955. doi:10.1002/ctm2.9553.
  • Almeida M, Laurent MR, Dubois V, et al. Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev. 2017;97(1):135–187. doi:10.1152/physrev.00033.20152.
  • Richardson KK, Ling W, Krager K, et al. Ionizing radiation activates mitochondrial function in osteoclasts and causes bone loss in young adult male mice. Int J Mol Sci. 2022;23(2):675. doi:10.3390/ijms23020675.9.
  • Li N, Li X, Zheng K, et al. Inhibition of sirtuin 3 prevents titanium particle-induced bone resorption and osteoclastsogenesis via suppressing ERK and JNK signaling. Int J Biol Sci. 2021;17(5):1382–1394. doi:10.7150/ijbs.539923.
  • K Kanfi Y, Shalman R, Peshti V, et al. Regulation of SIRT6 protein levels by nutrient availability. FEBS Lett. 2008;582(5):543–548. doi:10.1016/j.febslet.2008.01.0195.
  • Kugel S, Mostoslavsky R. Chromatin and beyond: the multitasking roles for SIRT6. Trends Biochem Sci. 2014;39(2):72–81. doi:10.1016/j.tibs.2013.12.0026.
  • Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124(2):315–329. doi:10.1016/j.cell.2005.11.0446.
  • Mu W, Wang Z, Ma C, et al. Metformin promotes the proliferation and differentiation of murine preosteoblast by regulating the expression of sirt6 and oct4. Pharmacol Res. 2018;129:462–474. doi:10.1016/j.phrs.2017.11.0208.
  • Zhang DM, Cui DX, Xu RS, et al. Phenotypic research on senile osteoporosis caused by SIRT6 deficiency. Int J Oral Sci. 2016;8(2):84–92. doi:10.1038/ijos.2015.570.
  • Zhang D, Jing J, Lou F, et al. Evidence for excessive osteoclast activation in SIRT6 null mice. Sci Rep. 2018;8(1):10992. doi:10.1038/s41598-018-28716-z3.
  • Kim SJ, Piao Y, Lee MG, et al. Loss of sirtuin 6 in osteoblast lineage cells activates osteoclasts, resulting in osteopenia. Bone. 2020;138:115497. doi:10.1016/j.bone.2020.1154971.
  • Park SJ, Huh JE, Shin J, et al. Sirt6 cooperates with Blimp1 to positively regulate osteoclast differentiation. Sci Rep. 2016;6(1):26186. doi:10.1038/srep261869.
  • Moon YJ, Zhang Z, Bang IH, et al. Sirtuin 6 in preosteoclasts suppresses age- and estrogen deficiency-related bone loss by stabilizing estrogen receptor α. Cell Death Differ. 2019;26(11):2358–2370. doi:10.1038/s41418-019-0306-91.
  • Kok SH, Hou KL, Hong CY, et al. Sirtuin 6 modulates hypoxia-induced apoptosis in osteoblasts via inhibition of glycolysis: implication for pathogenesis of periapical lesions. J Endod. 2015;41(10):1631–1637. doi:10.1016/j.joen.2015.05.0086.
  • Li L, Shi L, Yang S, et al. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun. 2016;7(1):12235. doi:10.1038/ncomms122359.
  • Paredes S, Chua KF. SIRT7 clears the way for DNA repair. Embo J. 2016;35(14):1483–1485. doi:10.15252/embj.201694904.
  • Tang M, Li Z, Zhang C, et al. SIRT7-mediated ATM deacetylation is essential for its deactivation and DNA damage repair. Sci Adv. 2019;5(3):eaav1118. doi:10.1126/sciadv.aav11184.
  • Chang HHY, Pannunzio NR, Adachi N, et al. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017;18(8):495–506. doi:10.1038/nrm.2017.481.
  • Vazquez BN, Thackray JK, Simonet NG, et al. SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. Embo J. 2016;35(14):1488–1503. doi:10.15252/embj.2015934992.
  • Ryu D, Jo YS, Lo Sasso G, et al. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell Metab. 2014;20(5):856–869. doi:10.1016/j.cmet.2014.08.0013.
  • Shin J, He M, Liu Y, et al. SIRT7 represses myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep. 2013;5(3):654–665. doi:10.1016/j.celrep.2013.10.0070.
  • Vakhrusheva O, Smolka C, Gajawada P, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res. 2008;102(6):703–710. doi:10.1161/CIRCRESAHA.107.1645588.
  • Fukuda M, Yoshizawa T, Karim MF, et al. SIRT7 has a critical role in bone formation by regulating lysine acylation of SP7/osterix. Nat Commun. 2018;9(1):2833. doi:10.1038/s41467-018-05187-45.
  • Tseng PC, Hou SM, Chen RJ, et al. Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J Bone Miner Res. 2011;26(10):2552–2563. doi:10.1002/jbmr.4605.
  • Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004;429(6993):771–776. doi:10.1038/nature025831.
  • Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–1060. doi:10.1038/nature078138.
  • Yao H, Yao Z, Zhang S, et al. Upregulation of SIRT1 inhibits H2O2-induced osteoblast apoptosis via FoxO1/β-catenin pathway. Mol Med Rep. 2018;17(5):6681–6690. doi:10.3892/mmr.2018.86576.
  • Gu X, Wang Z, Gao J, et al. SIRT1 suppresses p53-dependent apoptosis by modulation of p21 in osteoblast-like MC3T3-E1 cells exposed to fluoride. Toxicol in Vitro. 2019;57:28–38. doi:10.1016/j.tiv.2019.02.0067.
  • Huang W, Shang WL, Wang HD, et al. Sirt1 overexpression protects murine osteoblasts against TNF-α-induced injury in vitro by suppressing the NF-κB signaling pathway. Acta Pharmacol Sin. 2012;33(5):668–674. doi:10.1038/aps.2011.1893.
  • Ishii KA, Fumoto T, Iwai K, et al. Coordination of PGC-1β and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med. 2009;15(3):259–266. doi:10.1038/nm.1910.
  • Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci. 2011;36(1):30–38. doi:10.1016/j.tibs.2010.07.0072.
  • Sun H, Wu Y, Fu D, et al. SIRT6 regulates osteogenic differentiation of rat bone marrow mesenchymal stem cells partially via suppressing the nuclear factor-κB signaling pathway. Stem Cells. 2014;32(7):1943–1955. doi:10.1002/stem.16717.
  • Xiao F, Zhou Y, Liu Y, et al. Inhibitory effect of Sirtuin6 (SIRT6) on osteogenic differentiation of bone marrow mesenchymal stem cells. Med Sci Monit. 2019;25:8412–8421. doi:10.12659/MSM.9171180.
  • Chen EEM, Zhang W, Ye CCY, et al. Knockdown of SIRT7 enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly via activation of the wnt/β-catenin signaling pathway. Cell Death Dis. 2017;8(9):e3042–e3042. doi:10.1038/cddis.2017.4294.
  • Fonseca-Santos B, Chorilli M. The uses of resveratrol for neurological diseases treatment and insights for nanotechnology based-drug delivery systems. Int J Pharm. 2020;589:119832. doi:10.1016/j.ijpharm.2020.1198320.
  • Du S, Shen S, Ding S, et al. Suppression of microRNA-323-3p restrains vascular endothelial cell apoptosis via promoting sirtuin-1 expression in coronary heart disease. Life Sci. 2021;270:119065. doi:10.1016/j.lfs.2021.1190651.
  • Chao CC, Huang CL, Cheng JJ, et al. SRT1720 as an SIRT1 activator for alleviating paraquat-induced models of Parkinson’s disease. Redox Biol. 2022;58:102534. doi:10.1016/j.redox.2022.1025340.
  • Hua R, Wang GZ, Shen QW, et al. Sleeve gastrectomy ameliorated high-fat diet (HFD)-induced non-alcoholic fatty liver disease and upregulated the nicotinamide adenine dinucleotide +/sirtuin-1 pathway in mice. Asian J Surg. 2021;44(1):213–220. doi:10.1016/j.asjsur.2020.05.0305.
  • Hao L, Park J, Jang HY, et al. Inhibiting protein kinase activity of pyruvate kinase M2 by SIRT2 deacetylase attenuates psoriasis. J Invest Dermatol. 2021;141(2):355–363.e6. doi:10.1016/j.jid.2020.06.0247.
  • Park S, Chung MJ, Son JY, et al. The role of sirtuin 2 in sustaining functional integrity of the liver. Life Sci. 2021;285:119997. doi:10.1016/j.lfs.2021.1199978.
  • Zhang Y, Lin C, Yang Q, et al. Spinal sirtuin 3 contributes to electroacupuncture analgesia in mice with chronic constriction Injury-Induced neuropathic pain. Neuromodulation. 2023;26(3):563–576. doi:10.1016/j.neurom.2022.07.0094.
  • Zhang Q, Ren J, Wang F, et al. Chinese herbal medicine alleviates the pathogenesis of polycystic ovary syndrome by improving oxidative stress and glucose metabolism via mitochondrial sirtuin 3 signaling. Phytomedicine. 2023;109:154556. doi:10.1016/j.phymed.2022.1545569.
  • Liu L, Wang B, Yang W, et al. Sirtuin 3 relieves inflammatory responses elicited by lipopolysaccharide via the PGC1α-NFκB pathway in bovine mammary epithelial cells. J Dairy Sci. 2023;106(2):1315–1329. doi:10.3168/jds.2022-221143.
  • Xu X, Zhang L, Hua F, et al. FOXM1-activated SIRT4 inhibits NF-κB signaling and NLRP3 inflammasome to alleviate kidney injury and podocyte pyroptosis in diabetic nephropathy. Exp Cell Res. 2021;408(2):112863. doi:10.1016/j.yexcr.2021.112863. PD: 34626587
  • He L, Wang J, Yang Y, et al. SIRT4 suppresses doxorubicin-induced cardiotoxicity by regulating the AKT/mTOR/autophagy pathway. Toxicol. 2022;469:153119. doi:10.1016/j.tox.2022.1531193.
  • Zheng D, Qiwen Zeng, He D et al. SIRT5 alleviates hepatic ischemia and reperfusion injury by diminishing oxidative stress and inflammation via elevating SOD1 and IDH2 expression. Exp Cell Res 2022;419(2):113319. doi:10.1016/j.yexcr.2022.1133196.
  • He T, Shang J, Gao C, et al. A novel SIRT6 activator ameliorates neuroinflammation and ischemic brain injury via EZH2/FOXC1 axis. Acta Pharm Sin B. 2021;11(3):708–726. doi:10.1016/j.apsb.2020.11.0027.
  • Bian C, Zhang R, Wang Y, et al. Sirtuin 6 affects glucose reabsorption and gluconeogenesis in type 1 diabetes via FoxO1. Mol Cell Endocrinol. 2022;547:111597. doi:10.1016/j.mce.2022.1115978.
  • Wang D, Wei X, Chen X, et al. GRIM-19 inhibits proliferation and induces apoptosis in a p53-dependent manner in colorectal cancer cells through the SIRT7/PCAF/MDM2 axis. Exp Cell Res. 2021;407(1):112799. doi:10.1016/j.yexcr.2021.1127990.
  • Li XT, Song JW, Zhang ZZ, et al. Sirtuin 7 mitigates renal ferroptosis, fibrosis and injury in hypertensive mice by facilitating the KLF15/Nrf2 signaling. Free Radic Biol Med. 2022;193(Pt 1):459–473. doi:10.1016/j.freeradbiomed.2022.10.3206.
  • Meccariello R, D'Angelo S. Impact of polyphenolic-food on longevity: an elixir of life. An overview. Antioxidants (Basel). 2021;10(4):507. doi:10.3390/antiox100405072.
  • Ziętara P, Dziewięcka M, Augustyniak M. Why is longevity still a scientific mystery? Sirtuins-past, present and future. Int J Mol Sci. 2022;24(1):728. doi:10.3390/ijms240107281.
  • Cao M, Zhao Q, Sun X, et al. Sirtuin 3: emerging therapeutic target for cardiovascular diseases. Free Radic Biol Med. 2022;180:63–74. doi:10.1016/j.freeradbiomed.2022.01.005.
  • He Y, Huang W, Zhang C, et al. Energy metabolism disorders and potential therapeutic drugs in heart failure. Acta Pharm Sin B. 2021;11(5):1098–1116. doi:10.1016/j.apsb.2020.10.0072.
  • Zaganjor E, Yoon H, Spinelli JB, et al. SIRT4 is an early regulator of branched-chain amino acid catabolism that promotes adipogenesis. Cell Rep. 2021;36(2):109345. doi:10.1016/j.celrep.2021.1093453.
  • Yudoh K, Yui N, Terauchi K, et al. Sirtuins in bone and cartilage biology. In: Sirtuin biology in medicine. New York: Academic Press; 2021. p. 341–351. doi:10.1016/C2016-0-04428-5.
  • Dai Y, Lin J, Ren J, et al. NAD + metabolism in peripheral neuropathic pain. Neurochem Int. 2022;161:105435. doi:10.1016/j.neuint.2022.1054356.
  • He L, Wang J, Yang Y, et al. Mitochondrial sirtuins in parkinson’s disease. Neurochem Res. 2022;47(6):1491–1502. doi:10.1007/s11064-022-03560-w2.
  • Govindarajulu M, Ramesh S, Neel L, et al. Nutraceutical based SIRT3 activators as therapeutic targets in Alzheimer’s disease. Neurochem Int. 2021;144:104958. doi:10.1016/j.neuint.2021.1049585.
  • Julien C, Tremblay C, Emond V, et al. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol. 2009;68(1):48–58. doi:10.1097/NEN.0b013e31819223486.
  • Mohamad Nasir NF, Zainuddin A, Shamsuddin S. Emerging roles of sirtuin 6 in Alzheimer’s disease. J Mol Neurosci. 2018;64(2):157–161. doi:10.1007/s12031-017-1005-y2.
  • Kumar V, Kundu S, Singh A, et al. Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: current targets and future perspective. Curr Neuropharmacol. 2022;20(1):158–178. doi:10.2174/1570159X196662106091600174.
  • Yu Z, Fan D, Gui B, et al. Neurodegeneration-associated TDP-43 interacts with fragile X mental retardation protein (FMRP)/staufen (STAU1) and regulates SIRT1 expression in neuronal cells. J Biol Chem. 2012;287(27):22560–22572. doi:10.1074/jbc.M112.357582.
  • Wang X, Liu R, Zhang W, et al. Role of SIRT1 in HIV-associated kidney disease. Am J Physiol Renal Physiol. 2020;319(2):F335–F344. doi:10.1152/ajprenal.00140.20207.
  • Ji J, Wang K, Meng X, et al. Elaiophylin inhibits tumorigenesis of human lung adenocarcinoma by inhibiting mitophagy via suppression of SIRT1/Nrf2 signaling. Cancers (Basel). 2022;14(23):5812. doi:10.3390/cancers142358124.
  • Mahjabeen I, Rizwan M, Fareen G, et al. Mitochondrial sirtuins genetic variations and gastric cancer risk: evidence from retrospective observational study. Gene. 2022;807:145951. doi:10.1016/j.gene.2021.1459511.
  • Palomer X, Aguilar-Recarte D, García R, et al. Sirtuins: to be or not to be in diabetic cardiomyopathy. Trends Mol Med. 2021;27(6):554–571. doi:10.1016/j.molmed.2021.03.0044.
  • Hu J, Pan LY, Li Y, et al. Deacetylation-activated construction of single quantum dot-based nanosensor for sirtuin 1 assay. Talanta. 2021;224:121918. doi:10.1016/j.talanta.2020.1219189.
  • Kratz EM, Kokot I, Dymicka-Piekarska V, et al. Sirtuins-the new important players in women’s gynecological health. Antioxidants. 2021;10(1):84. doi:10.3390/antiox100100847.
  • Bartosch C, Monteiro-Reis S, Almeida-Rios D, et al. Assessing sirtuin expression in endometrial carcinoma and non-neoplastic endometrium. Oncotarget. 2016;7(2):1144–1154. doi:10.18632/oncotarget.6691.
  • Xu D, He H, Jiang X, et al. SIRT2 plays a novel role on progesterone, estradiol and testosterone synthesis via PPARs/LXRα pathways in bovine ovarian granular cells. J Steroid Biochem Mol Biol. 2019;185:27–38. doi:10.1016/j.jsbmb.2018.07.0051.
  • Zhang Q, Ren J, Wang F, et al. Mitochondrial and glucose metabolic dysfunctions in granulosa cells induce impaired oocytes of polycystic ovary syndrome through sirtuin 3. Free Radic Biol Med. 2022;187:1–16. doi:10.1016/j.freeradbiomed.2022.05.0100.
  • Fernando KKM, Wijayasinghe YS. Sirtuins as potential therapeutic targets for mitigating neuroinflammation associated with Alzheimer’s disease. Front Cell Neurosci. 2021;15:746631. doi:10.3389/fncel.2021.7466314.
  • Mourits VP, Helder LS, Matzaraki V, et al. The role of sirtuin 1 on the induction of trained immunity. Cell Immunol. 2021;366:104393. doi:10.1016/j.cellimm.2021.1043931.
  • Winnik S, Auwerx J, Sinclair DA, et al. Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J. 2015;36(48):3404–3412. doi:10.1093/eurheartj/ehv2909.
  • Balaiya S, Khetpal V, Chalam KV. Hypoxia initiates sirtuin1-mediated vascular endothelial growth factor activation in choroidal endothelial cells through hypoxia inducible factor-2α. Mol Vis. 2012;18:114–120.2
  • Thandapilly SJ, Wojciechowski P, Behbahani J, et al. Resveratrol prevents the development of pathological cardiac hypertrophy and contractile dysfunction in the SHR without lowering blood pressure. Am J Hypertens. 2010;23(2):192–196. doi:10.1038/ajh.2009.2281.
  • Ozawa H, Miyagawa S, Fukushima S, et al. Sirtuin1 regulates the stem cell therapeutic effects on regenerative capability for treating severe heart failure in a juvnile animal model. Ann Thorac Surg. 2016;102(3):803–812. doi:10.1016/j.athoracsur.2016.02.0935.
  • Sundaresan NR, Vasudevan P, Zhong L, et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-jun. Nat Med. 2012;18(11):1643–1650. doi:10.1038/nm.2961.
  • Matsushima S, Sadoshima J. The role of sirtuins in cardiac disease. Am J Physiol Heart Circ Physiol. 2015;309(9):H1375–89. doi:10.1152/ajpheart.00053.20152.
  • Araki S, Izumiya Y, Rokutanda T, et al. Sirt7 contributes to myocardial tissue repair by maintaining transforming growth factor-β signaling pathway. Circulation. 2015;132(12):1081–1093. doi:10.1161/CIRCULATIONAHA.114.0148210.
  • Sidorova-Darmos E, Wither RG, Shulyakova N, et al. Differential expression of sirtuin family members in the developing, adult, and aged rat brain. Front Aging Neurosci. 2014;6:333. doi:10.3389/fnagi.2014.003336.
  • Ramadori G, Lee CE, Bookout AL, et al. Brain SIRT1: anatomical distribution and regulation by energy availability. J Neurosci. 2008;28(40):9989–9996. doi:10.1523/JNEUROSCI.3257-08.20086.
  • Glorioso C, Oh S, Douillard GG, et al. Brain molecular aging, promotion of neurological disease and modulation by Sirtuin5 longevity gene polymorphism. Neurobiol Dis. 2011;41(2):279–290. doi:10.1016/j.nbd.2010.09.016.
  • Donmez G, Outeiro TF. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med. 2013;5(3):344–352. doi:10.1002/emmm.2013024512.
  • Herskovits AZ, Guarente L. SIRT1 in neurodevelopment and brain senescence. Neuron. 2014;81(3):471–483. doi:10.1016/j.neuron.2014.01.0286.
  • Jiang DQ, Wang Y, Li MX, et al. SIRT3 in neural stem cells attenuates microglia activation-induced oxidative stress injury through mitochondrial pathway. Front Cell Neurosci. 2017;11:7. doi:10.3389/fncel.2017.000079.
  • Li L, Sun Q, Li Y, et al. Overexpression of SIRT1 induced by resveratrol and inhibitor of miR-204 suppresses activation and proliferation of microglia. J Mol Neurosci. 2015;56(4):858–867. doi:10.1007/s12031-015-0526-54.
  • Pais TF, Szegő ÉM, Marques O, et al. The NAD‐dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation. Embo J. 2013;32(19):2603–2616. doi:10.1038/emboj.2013.200.
  • Etchegaray JP, Chavez L, Huang Y, et al. The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine. Nat Cell Biol. 2015;17(5):545–557. doi:10.1038/ncb3147.
  • Fujita Y, Yamashita T. Sirtuins in neuroendocrine regulation and neurological diseases. Front Neurosci. 2018;12:778. doi:10.3389/fnins.2018.007785.
  • Szegő ÉM, Outeiro TF, Kazantsev AG. Sirtuins in brain and neurodegenerative disease. In: Introductory review on sirtuins in biology, aging, and disease. New York: Academic Press; 2018. p. 175–195.
  • Zhang F, Wang S, Gan L, et al. Protective effects and mechanisms of sirtuins in the nervous system. Prog Neurobiol. 2011;95(3):373–395. doi:10.1016/j.pneurobio.2011.09.0012.
  • Roth M, Chen WY. Sorting out functions of sirtuins in cancer. Oncogene. 2014;33(13):1609–1620. doi:10.1038/onc.2013.1200.
  • Morris BJ. Seven sirtuins for seven deadly diseases ofaging. Free Radic Biol Med. 2013;56:133–171. doi:10.1016/j.freeradbiomed.2012.10.525.
  • Jeong SM, Haigis MC. Sirtuins in cancer: a balancing act between genome stability and metabolism. Mol Cells. 2015;38(9):750–758. doi:10.14348/molcells.2015.01674.
  • Liu PY, Xu N, Malyukova A, et al. The histone deacetylase SIRT2 stabilizes myc oncoproteins. Cell Death Differ. 2013;20(3):503–514. doi:10.1038/cdd.2012.1478.
  • Zhao D, Zou SW, Liu Y, et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase a and is decreased in pancreatic cancer. Cancer Cell. 2013;23(4):464–476. 15doi: 10.1016/j.ccr.2013.02.0053.
  • Cui Y, Qin L, Wu J, et al. SIRT3 enhances glycolysis and proliferation in SIRT3-Expressing gastric cancer cells. PLoS One. 2015;10(6):e0129834. doi:10.1371/journal.pone.01298341.
  • Finley LW, Carracedo A, Lee J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell. 2011;19(3):416–428. doi:10.1016/j.ccr.2011.02.0143.
  • He S, He C, Yuan H, et al. The SIRT 3 expression profile is associated with pathological and clinical outcomes in human breast cancer patients. Cell Physiol Biochem. 2014;34(6):2061–2069. doi:10.1159/0003664014.
  • Yu FY, Xu Q, Wu DD, et al. The prognostic and clinicopathological roles of sirtuin-3 in various cancers. PLoS One. 2016;11(8):e0159801. doi:10.1371/journal.pone.01598012.
  • Jeong SM, Xiao C, Finley LW, et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell. 2013;23(4):450–463. doi:10.1016/j.ccr.2013.02.0241.
  • Sebastián C, Zwaans BM, Silberman DM, et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell. 2012;151(6):1185–1199. doi:10.1016/j.cell.2012.10.0476.
  • Zhang S, Chen P, Huang Z, et al. Sirt7 promotes gastric cancer growth and inhibits apoptosis by epigenetically inhibiting miR-34a. Sci Rep. 2015;5(1):9787. doi:10.1038/srep097871.
  • Geng Q, Peng H, Chen F, et al. High expression of Sirt7 served as a predictor of adverse outcome in breast cancer. Int J Clin Exp Pathol. 2015;8(2):1938–1945.
  • Wang HL, Lu RQ, Xie SH, et al. SIRT7 exhibits oncogenic potential in human ovarian cancer cells. Asian Pac J Cancer Prev. 2015;16(8):3573–3577. doi:10.7314/apjcp.2015.16.8.35730.
  • Wang RH, Kim HS, Xiao C, et al. Hepatic Sirt1 deficiency in mice impairs mTorc2/akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J Clin Invest. 2011;121(11):4477–4490. doi:10.1172/JCI46243.
  • Frescas D, Valenti L, Accili D. Nuclear trapping of the forkhead transcription factor FoxO1 via sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem. 2005;280(21):20589–20595. doi:10.1074/jbc.M4123572002.
  • Puigserver P, Rhee J, Donovan J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003;423(6939):550–555. doi:10.1038/nature01667.
  • Xiong X, Tao R, DePinho RA, et al. Deletion of hepatic FoxO1/3/4 genes in mice significantly impacts on glucose metabolism through downregulation of gluconeogenesis and upregulation of glycolysis. PLoS One. 2013;8(8):e74340. doi:10.1371/journal.pone.00743408.
  • Zhang W, Patil S, Chauhan B, et al. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem. 2006;281(15):10105–10117. doi:10.1074/jbc.M6002722005.
  • Jiang W, Wang S, Xiao M, et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell. 2011;43(1):33–44. doi:10.1016/j.molcel.2011.04.0288.
  • Liu Y, Dentin R, Chen D, et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature. 2008;456(7219):269–273. doi:10.1038/nature073499.
  • Kim HS, Xiao C, Wang RH, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 2010;12(3):224–236. S doi: 10.1016/j.cmet.2010.06.0099.
  • Yoshizawa T, Karim MF, Sato Y, et al. SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway. Cell Metab. 2014;19(4):712–721. doi:10.1016/j.cmet.2014.03.0062.
  • He Y, Luo Y, Zhang D, et al. PGK1-mediated cancer progression and drug resistance. Am J Cancer Res. 2019;9(11):2280–2302.5.
  • Hu H, Zhu W, Qin J, et al. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology. 2017;65(2):515–528. doi:10.1002/hep.288879.
  • Purushotham A, Schug TT, Xu Q, et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009;9(4):327–338. doi:10.1016/j.cmet.2009.02.0064.
  • Zhou M, Luo J, Zhang H. Role of sirtuin 1 in the pathogenesis of ocular disease (review). Int J Mol Med. 2018;42(1):13–20. doi:10.3892/ijmm.2018.36233.
  • Elhanati S, Kanfi Y, Varvak A, et al. Multiple regulatory layers of SREBP1/2 by SIRT6. Cell Rep. 2013;4(5):905–912. doi:10.1016/j.celrep.2013.08.0068.
  • Hirschey MD, Shimazu T, Goetzman E, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature. 2010;464(7285):121–125. doi:10.1038/nature087781.
  • Fennell L, Dumenil T, Wockner L, et al. Integrative genome-scale DNA methylation analysis of a large and unselected cohort reveals 5 distinct subtypes of colorectal adenocarcinomas. Cell Mol Gastroenterol Hepatol. 2019;8(2):269–290. doi:10.1016/j.jcmgh.2019.04.0022.
  • Laurent G, German NJ, Saha AK, et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell. 2013;50(5):686–698. doi:10.1016/j.molcel.2013.05.0122.
  • Kang HS, Okamoto K, Kim YS, et al. Nuclear orphan receptor TAK1/TR4-deficient mice are protected against obesity-linked inflammation, hepatic steatosis, and insulin resistance. Diabetes. 2011;60(1):177–188. doi:10.2337/db10-06284.
  • Ren JH, Tao Y, Zhang ZZ, et al. Sirtuin 1 regulates hepatitis B virus transcription and replication by targeting transcription factor AP-1. J Virol. 2014;88(5):2442–2451. doi:10.1128/JVI.02861-13.
  • Deng JJ, Kong KY, Gao WW, et al. Interplay between SIRT1 and hepatitis B virus X protein in the activation of viral transcription. Biochim Biophys Acta Gene Regul Mech. 2017;1860(4):491–501. doi:10.1016/j.bbagrm.2017.02.007.
  • Yang Y, Liu Y, Xue J, et al. MicroRNA-141 targets Sirt1 and inhibits autophagy to reduce HBV replication. Cell Physiol Biochem. 2017;41(1):310–322. doi:10.1159/0004561623.
  • Li WY, Ren JH, Tao NN, et al. The SIRT1 inhibitor, nicotinamide, inhibits hepatitis B virus replication in vitro and in vivo. Arch Virol. 2016;161(3):621–630. doi:10.1007/s00705-015-2712-82.
  • Ligat G, Goto K, Verrier E, et al. Targeting viral cccDNA for cure of chronic hepatitis B. Curr Hepatol Rep. 2020;19(3):235–244. doi:10.1007/s11901-020-00534-w.
  • Jiang H, Cheng ST, Ren JH, et al. SIRT6 inhibitor, OSS_128167 restricts hepatitis B virus transcription and replication through targeting transcription factor peroxisome proliferator-activated receptors α. Front Pharmacol. 2019;10:1270. doi:10.3389/fphar.2019.012709.
  • Qi C, Mao X, Zhang Z, et al. Classification and differential diagnosis of diabetic nephropathy. J Diabetes Res. 2017;2017:8637138–8637137. doi:10.1155/2017/86371385.
  • Tang J, Yao D, Yan H, et al. The role of microRNAs in the pathogenesis of diabetic nephropathy. Int J Endocrinol. 2019;2019:8719060–8719068. doi:10.1155/2019/87190603.
  • Chen X, Zhao L, Xing Y, et al. Down-regulation of microRNA-21 reduces inflammation and podocyte apoptosis in diabetic nephropathy by relieving the repression of TIMP3 expression. Biomed Pharmacother. 2018;108:7–14. doi:10.1016/j.biopha.2018.09.0070.
  • Wang T, Zhu H, Yang S, et al. Let-7a-5p may participate in the pathogenesis of diabetic nephropathy through targeting HMGA2. Mol Med Rep. 2019;19(5):4229–4237. doi:10.3892/mmr.2019.100574.
  • Samsu N. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed Res Int. 2021;2021:1497449–1497417. doi:10.1155/2021/14974490.
  • Guedes M, Pecoits-Filho R. Can we cure diabetic kidney disease? Present and future perspectives from a nephrologist’s point of view. J Intern Med. 2022;291(2):165–180. doi:10.1111/joim.134242.
  • Mortuza R, Chen S, Feng B, et al. High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS One. 2013;8(1):e54514. doi:10.1371/journal.pone.00545143.
  • Wax MB, Camras CB, Fiscella RG, et al. Emerging perspectives in glaucoma: optimizing 24-hour control of intraocular pressure. Am J Ophthalmol. 2002;133 Suppl(6):S1–S10. doi:10.1016/s0002-9394(02)01459-97.
  • Balaiya S, Ferguson LR, Chalam KV. Evaluation of sirtuin role in neuroprotection of retinal ganglion cells in hypoxia. Invest Ophthalmol Vis Sci. 2012;53(7):4315–4322. doi:10.1167/iovs.11-92596.
  • Dioum EM, Chen R, Alexander MS, et al. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science. 2009;324(5932):1289–1293. doi:10.1126/science.11699562.
  • Lim JH, Lee YM, Chun YS, et al. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell. 2010;38(6):864–878. doi:10.1016/j.molcel.2010.05.0236.
  • Levkovitch-Verbin H, Quigley HA, Martin KR, et al. The transcription factor c-jun is activated in retinal ganglion cells in experimental rat glaucoma. Exp Eye Res. 2004;80(5):663–670. doi:10.1016/j.exer.2004.11.0163.
  • Yi J, Luo J. SIRT1 and p53, effect on cancer, senescence and beyond. Biochim Biophys Acta. 2010;1804(8):1684–1689. doi:10.1016/j.bbapap.2010.05.0023.
  • Bien A, Seidenbecher CI, Böckers TM, et al. Apoptotic versus necrotic characteristics of retinal ganglion cell death after partial optic nerve injury. J Neurotrauma. 1999;16(2):153–163. doi:10.1089/neu.1999.16.153.
  • Mesner PW, Epting CL, Hegarty JL, et al. A timetable of events during programmed cell death induced by trophic factor withdrawal from neuronal PC12 cells. J Neurosci. 1995;15(11):7357–7366. doi:10.1523/JNEUROSCI.15-11-07357.1995.
  • Yang X, Cai J, Powell DW, et al. Up-regulation of sirtuins in the glaucomatous human retina. Investig Ophthalmol Vis Sci. 2014;55(13):2398.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.