54
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Nobiletin derivative, 5-acetoxy-6,7,8,3’,4’-pentamethoxyflavone, inhibits neuroinflammation through the inhibition of TLR4/MyD88/MAPK signaling pathways and STAT3 in microglia

, , , , , , , & show all
Received 12 Jul 2023, Accepted 18 May 2024, Published online: 04 Jun 2024

References

  • Kim N, Do J, Bae JS, et al. Piperlongumine inhibits neuroinflammation via regulating NF-kappaB signaling pathways in lipopolysaccharide-stimulated BV2 microglia cells. J Pharmacol Sci. 2018; 137(2):195–201.
  • Norris GT, Kipnis J. Immune cells and CNS physiology: microglia and beyond. J Exp Med. 2019; 216(1):60–70. doi: 10.1084/jem.20180199.
  • Wang J, Wang J, Wang J, et al. Targeting microglia and macrophages: a potential treatment strategy for multiple sclerosis. Front Pharmacol. 2019;10:286. doi: 10.3389/fphar.2019.00286.
  • de Sousa JAC, Azul F, de Araujo AB, et al. Epiisopiloturine, an alkaloid from pilocarpus microphyllus, attenuates LPS-Induced neuroinflammation by interfering in the TLR4/NF-kappaB-MAPK signaling pathway in microglial cells. Oxid Med Cell Longev. 2023;2023:4752502.
  • Janpaijit S, Sillapachaiyaporn C, Theerasri A, et al. Cleistocalyx nervosum var. paniala berry seed protects against TNF-alpha-Stimulated neuroinflammation by inducing HO-1 and suppressing NF-kappaB mechanism in BV-2 microglial cells. Molecules. 2023; 28(7):3057. doi: 10.3390/molecules28073057.
  • Xu M, Yang Y, Peng J, et al. Effects of alpinae oxyphyllae fructus on microglial polarization in a LPS-induced BV2 cells model of neuroinflammation via TREM2. J Ethnopharmacol. 2023; 302(Pt A):115914.
  • Bachiller S, Jiménez-Ferrer I, Paulus A, et al. Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front Cell Neurosci. 2018;12:488. doi: 10.3389/fncel.2018.00488.
  • Song GJ, Suk K. Pharmacological modulation of functional phenotypes of microglia in neurodegenerative diseases. Front Aging Neurosci. 2017;9:139. doi: 10.3389/fnagi.2017.00139.
  • Hansen DV, Hanson JE, Sheng M. Microglia in alzheimer’s disease. J Cell Biol. 2018; 217(2):459–472. doi: 10.1083/jcb.201709069.
  • Rau CS, Wu SC, Lu TH, et al. Effect of Low-Fat diet in obese mice lacking toll-like receptors. Nutrients. 2018; 10(10):1464. doi: 10.3390/nu10101464.
  • Muhammad T, Ikram M, Ullah R, et al. Hesperetin, a citrus flavonoid, attenuates LPS-Induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-kappaB signaling. Nutrients. 2019; 11(3):648. doi: 10.3390/nu11030648.
  • Roy A, Srivastava M, Saqib U, et al. Potential therapeutic targets for inflammation in toll-like receptor 4 (TLR4)-mediated signaling pathways. Int Immunopharmacol. 2016; 40:79–89.
  • Rahimifard M, Maqbool F, Moeini-Nodeh S, et al. Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Ageing Res Rev. 2017; Jul36:11–19.
  • Fontana G, Bruno M, Sottile F, et al. The chemistry and the anti-inflammatory activity of polymethoxyflavonoids from citrus genus. Antioxidants (Basel). 2023;12(1):23. doi: 10.3390/antiox12010023.
  • Matsumoto S, Tominari T, Matsumoto C, et al. Effects of polymethoxyflavonoids on bone loss induced by estrogen deficiency and by LPS-Dependent inflammation in mice. Pharmaceuticals (Basel). 2018; 11(1):7. doi: 10.3390/ph11010007.
  • Cui Y, Wu J, Jung SC, et al. Anti-neuroinflammatory activity of nobiletin on suppression of microglial activation. Biol Pharm Bull. 2010;33(11):1814–1821.
  • Tung YC, Li S, Huang Q, et al. 5-Demethylnobiletin and 5-acetoxy-6,7,8,3’,4’-pentamethoxyflavone suppress lipid accumulation by activating the LKB1-AMPK pathway in 3T3-L1 preadipocytes and high fat Diet-Fed C57BL/6 mice. J Agric Food Chem. 2016; 64(16):3196–3205.
  • Chen WF, Shih YH, Liu HC, et al. 6-methoxyflavone suppresses neuroinflammation in lipopolysaccharide- stimulated microglia through the inhibition of TLR4/MyD88/p38 MAPK/NF-kappaB dependent pathways and the activation of HO-1/NQO-1 signaling. Phytomedicine. 2022; 99:154025. doi: 10.1016/j.phymed.2022.154025.
  • Yu CI, Cheng CI, Kang YF, et al. Hispidulin inhibits neuroinflammation in Lipopolysaccharide-Activated BV2 microglia and attenuates the activation of akt, NF-kappaB, and STAT3 pathway. Neurotox Res. 2020; 38(1):163–174. doi: 10.1007/s12640-020-00197-x.
  • Yu CI, Chen CY, Liu W, et al. Sandensolide induces oxidative stress-mediated apoptosis in oral cancer cells and in zebrafish xenograft model. Mar Drugs. 2018; 16(10):387. doi: 10.3390/md16100387.
  • He PP, Shen QQ, Wen M, et al. Nobiletin reduces LPL-mediated lipid accumulation and pro-in fl ammatory cytokine secretion through upregulation of miR-590 expression. Biochem Biophys Res Commun. 2019; Jan 1508(1):97–101.
  • Zhang Y, Wang C, Jia ZL, et al. Isoniazid promotes the anti-inflammatory response in zebrafish associated with regulation of the PPARgamma/NF-kappaB/AP-1 pathway. Chem Biol Interact. 2020; 316:108928.
  • Zhu H, Wang Z, Wang W, et al. Bacterial Quorum-Sensing signal DSF inhibits LPS-Induced inflammations by suppressing toll-like receptor signaling and preventing Lysosome-Mediated apoptosis in zebrafish. Int J Mol Sci. 2022;23(13):7110. doi: 10.3390/ijms23137110.
  • Murakami A, Ohigashi H. Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int J Cancer. 2007; 121(11):2357–2363. doi: 10.1002/ijc.23161.
  • Shih RH, Wang CY, Yang CM. NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci. 2015;8:77. doi: 10.3389/fnmol.2015.00077.
  • Li B, Wang M, Chen S, et al. Baicalin mitigates the neuroinflammation through the TLR4/MyD88/NF-kappaB and MAPK pathways in LPS-Stimulated BV-2 microglia. Biomed Res Int. 2022;2022:3263446.
  • Amorim LS, Marques Goes PE, Figueiredo RDA, et al. In vitro antibacterial and anti-inflammatory effects of Anacardium occidentale L. extracts and their toxicity on PBMCs and zebrafish embryos. Drug Chem Toxicol. 2022; 45(6):2653–2663.
  • Eissa MA, Hashim YZH, Mohd Nasir MH, et al. Fabrication and characterization of agarwood extract-loaded nanocapsules and evaluation of their toxicity and anti-inflammatory activity on RAW 264.7 cells and in zebrafish embryos. Drug Deliv. 2021; 28(1):2618–2633.
  • Chen J, Tchivelekete GM, Zhou X, et al. Anti-inflammatory activities of gardenia jasminoides extracts in retinal pigment epithelial cells and zebrafish embryos. Exp Ther Med. 2021;22(1):700. doi: 10.3892/etm.2021.10132.
  • Park K, Han EJ, Ahn G, et al. Effects of thermal stress-induced lead (Pb) toxicity on apoptotic cell death, inflammatory response, oxidative defense, and DNA methylation in zebrafish (Danio rerio) embryos. Aquat Toxicol. 2020;224:105479.
  • Li S, Lo CY, Ho CT. Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (citrus sinensis) peel. J Agric Food Chem. 2006; 54(12):4176–4185.
  • Peng Q, Zhang Y, Zhu M, et al. Polymethoxyflavones from citrus peel: advances in extraction methods, biological properties, and potential applications. Crit Rev Food Sci Nutr. 2022; 18:1–13.
  • Liao W, Liu Z, Zhang T, et al. Enhancement of anti-inflammatory properties of nobiletin in macrophages by a Nano-Emulsion preparation. J Agric Food Chem. 2018; 66(1):91–98.
  • Guo S, Qiu P, Xu G, et al. Synergistic anti-inflammatory effects of nobiletin and sulforaphane in lipopolysaccharide-stimulated RAW 264.7 cells. J Agric Food Chem. 2012;60(9):2157–2164. doi: 10.1021/jf300129t.
  • Lin N, Sato T, Takayama Y, et al. Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem Pharmacol. 2003;15:65(12):2065–71.
  • Lee YY, Lee EJ, Park JS, et al. Anti-inflammatory and antioxidant mechanism of tangeretin in activated microglia. J Neuroimmune Pharmacol. 2016;11(2):294–305. doi: 10.1007/s11481-016-9657-x.
  • Wang CC, Kong JY, Xue CH, et al. Antarctic krill oil exhibited synergistic effects with nobiletin and theanine on regulating Ligand-Specific receptor-mediated transcytosis in Blood-Brain barrier by inhibiting alkaline phosphatase in SAM. P8 Mice. Mol Nutr Food Res. 2023; 67(8):e2200825.
  • Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69. doi: 10.1038/nrn2038.
  • Hirata Y, Masuda Y, Kakutani H, et al. Sp1 is an essential transcription factor for LPS-induced tissue factor expression in THP-1 monocytic cells, and nobiletin represses the expression through inhibition of NF-kappaB, AP-1, and Sp1 activation. Biochem Pharmacol. 2008;75(7):1504–1514.
  • Chandrasekar SA, Palaniyandi T, Parthasarathy U, et al. Implications of Toll-Like receptors (TLRs) and their signaling mechanisms in human cancers. Pathol Res Pract. 2023; 248:154673. doi: 10.1016/j.prp.2023.154673.
  • Kim KW, Lee YS, Choi BR, et al. Anti-neuroinflammatory effect of the ethanolic extract of black ginseng through TLR4-Myd88-regulated inhibition of NF-Kappab and MAPK signaling pathways in LPS-Induced Bv2 microglial cells. Int J Mol Sci. 2023;24(20):15320. doi: 10.3390/ijms242015320.
  • Xu HJ, Li XP, Han LY. Role and mechanism of esketamine in improving postoperative cognitive dysfunction in aged mice through the Tlr4/Myd88/P38 mapk pathway. Kaohsiung J Med Sci. 2024;40(1):63–73.
  • Han C, Pei H, Sheng Y, et al. HIPK2 mediates M1 polarization of microglial cells via STAT3: a new mechanism of depression-related neuroinflammation. J Cell Physiol. 2024;239(3):e30994.
  • Van TP, Bao TH, Leya M, et al. Amlexanox attenuates LPS-induced neuroinflammatory responses in microglial cells via inhibition of NF-κB and STAT3 signaling pathways. Sci Rep. 2024; 14(1):2744. doi: 10.1038/s41598-024-53235-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.