53
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Reno-protective effect of fenofibrate and febuxostat against vancomycin-induced acute renal injury in rats: Targeting PPARγ/NF-κB/COX-II and AMPK/Nrf2/HO-1 signaling pathways

ORCID Icon, , , , &
Received 21 Dec 2023, Accepted 22 Jun 2024, Published online: 09 Jul 2024

References

  • Ingram PR, Lye DC, Tambyah PA, et al. Risk factors for nephrotoxicity associated with continuous vancomycin infusion in outpatient parenteral antibiotic therapy. J Antimicrob Chemother. 2008;62(1):168–171. doi: 10.1093/jac/dkn080.
  • Nishino Y, Takemura S, Minamiyama Y, et al. Inhibition of vancomycin-induced nephrotoxicityby targeting superoxide dismutase to renal proximal tubule cells in the rat. Redox Rep. 2002;7(5):317–319. doi: 10.1179/135100002125000884.
  • MoelleringJr.RC. Vancomycin: a 50-year reassessment. Clin Infect Dis. 2006;42 Suppl 1(Supplement_1):S3–S4. doi: 10.1086/491708.
  • Elyasi S, Khalili H, Dashti-Khavidaki S, et al. Vancomycin-induced nephrotoxicity: mechanism, incidence, risk factors and special populations: a literature review. Eur J Clin Pharmacol. 2012;68(9):1243–1255. doi: 10.1007/s00228-012-1259-9.
  • Lodise TP, Lomaestro B, Graves J, et al. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother. 2008;52(4):1330–1336. doi: 10.1128/AAC.01602-07.
  • Elting LS, Rubenstein EB, Kurtin D, et al. Mississippi mud in the 1990s: risks and outcomes of vancomycin-associated toxicity in general oncology practice. Cancer. 1998;83(12):2597–2607. doi: 10.1002/(SICI)1097-0142(19981215)83:12<2597::AID-CNCR27>3.0.CO;2-L.
  • Bayomy NA, Abdelaziz EZ, Said MA, et al. Effect of pycnogenol and spirulina on vancomycin induced renal cortical oxidative stress, apoptosis and autophagy in adult male albino rat. Can J Physiol Pharmacol. 2016;94:1–40.
  • Arimura Y, Yano T, Hirano M, et al. Mitochondrial superoxide production contributes to vancomycin-induced renal tubular cell apoptosis. Free Radic Biol Med. 2012;52(9):1865–1873. doi: 10.1016/j.freeradbiomed.2012.02.038.
  • Nishino Y, Takemura S, Minamiyama Y, et al. Targeting superoxide dismutase to renal proximal tubule cells attenuates vancomycin-induced nephrotoxicity in rats. Free Radic Res. 2003;37(4):373–379. doi: 10.1080/1071576031000061002.
  • Oktem F, Arslan MK, Ozguner F, et al. In vivo evidences suggesting the role of oxidative stress in pathogenesis of vancomycin-induced nephrotoxicity: protection by erdosteine. Toxicology. 2005;215(3):227–233. doi: 10.1016/j.tox.2005.07.009.
  • Hodoshima N, Nakano Y, Izumi M, et al. Protective effect of inactive ingredients against nephrotoxicity of vancomycin hydrochloride in rats. Drug Metab Pharmacokinet. 2004;19(1):68–75. doi: 10.2133/dmpk.19.68.
  • Celik I, Cihangiroglu N, Ilhan N, et al. Protective effects of different antioxidants and amrinone on vancomycin-induced nephrotoxicity. Basic Clin Pharmacol Toxicol. 2005;97(5):325–332. doi: 10.1111/j.1742-7843.2005.pto_153.x.
  • Abraham NG, Asija A, Drummond G, et al. Heme oxygenase -1 gene therapy: recent advances and therapeutic applications. Curr Gene Ther. 2007;7(2):89–108. doi: 10.2174/156652307780363134.
  • Dieterich C, Puey A, Lin S, et al. Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates. Toxicol Sci. 2009;107(1):258–269. doi: 10.1093/toxsci/kfn203.
  • Fanos V, Cataldi L. Renal transport of antibiotics and nephrotoxicity: a review. J Chemother. 2001;13(5):461–472. doi: 10.1179/joc.2001.13.5.461.
  • Sánchez-Lozada LG, Tapia E, Soto V, et al. Effect of febuxostat on the progression of renal disease in 5/6 nephrectomy rats with and without hyperuricemia. Nephron Physiol. 2008;108(4):p69–p78. doi: 10.1159/000127837.
  • Tsuda H, Kawada N, Kaimori J, et al. Febuxostat suppressed renal ischemia–reperfusion injury via reduced oxidative stress. Biochem Biophys Res Commun. 2012;427(2):266–272. doi: 10.1016/j.bbrc.2012.09.032.
  • Sabán-Ruiz J, Alonso-Pacho A, Fabregate-Fuente M, et al. Xanthine oxidase inhibitor febuxostat as a novel agent postulated to act against vascular inflammation. Antiinflamm Antiallergy Agents Med Chem. 2013;12(1):94–99. doi: 10.2174/1871523011312010011.
  • Omori H, Kawada N, Inoue K, et al. Use of xanthine oxidase inhibitor febuxostat inhibits renal interstitial inflammation and fibrosis in unilateral ureteral obstructive nephropathy. Clin Exp Nephrol. 2012;16(4):549–556. doi: 10.1007/s10157-012-0609-3.
  • Qu S, Dai C, Lang F, et al. Rutin attenuates vancomycin-induced nephrotoxicity by ameliorating oxidative stress, apoptosis, and inflammation in rats. Antimicrob Agents Chemother. 2018;63(1):e01545–18. doi: 10.1128/AAC.01545-18.
  • Sedik AA, Hassan AS, Shafey HI, et al. Febuxostat attenuates aluminum chloride-induced hepatorenal injury in rats with the impact of Nrf2, Crat, Car3, and MNK-mediated apoptosis. Environ Sci Pollut Res Int. 2023;30(35):83356–83375. doi: 10.1007/s11356-023-28182-9.
  • Ali AA, Saad EB, El-Rhman RHA, et al. Impact of peroxisome proliferator-activated receptor agonist drugs in a model of nephrotoxicity in rats. J Biochem Mol Toxicol. 2023;37:e23350.
  • Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978;86(1):271–278. doi: 10.1016/0003-2697(78)90342-1.
  • Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25(1):192–205. doi: 10.1016/0003-2697(68)90092-4.
  • Marklund SL. Product of extracellular-superoxide dismutase catalysis. FEBS Lett. 1985;184(2):237–239. doi: 10.1016/0014-5793(85)80613-x.
  • Tousson E, Hafez E, Masoud A. Abrogation by curcumin on testicular toxicity induced by cisplatin in rats. J Cancer Res Treat. 2014;2:64–68.
  • Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5(1):62–71. doi: 10.1006/niox.2000.0319.
  • Manktelow A, Meyer A. Lack of correlation between decreased chemotaxis and susceptibility to infection in burned rats. J Trauma. 1986;26(2):143–148. doi: 10.1097/00005373-198602000-00008.
  • Yalow RS, Berson SA. Immunoassay of endogenous plasma insulin in man. J Clin Invest. 1960;39(7):1157–1175. doi: 10.1172/JCI104130.
  • Van Weemen BK, Schuurs AHWM. Immunoassay using antigen-enzyme conjugates. FEBS Lett. 1971;15(3):232–236. doi: 10.1016/0014-5793(71)80319-8.
  • Wang SF, Abouzied MM, Smith DM. Protein as potential endpoint temperature indicators for ground beef patties. J Food Sci. 1996;61(1):5–7. doi: 10.1111/j.1365-2621.1996.tb14713.x.
  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350.
  • Bancroft JD, Gamble M. Theory and practice of histological techniques. 7th ed. Philadelphia: Churchill Livingstone Elsevier; 2013; pp. 172–186.
  • Basarslan F, Yilmaz N, Ates S, et al. Protective effects of thymoquinone on vancomycin-induced nephrotoxicity in rats. Hum Exp Toxicol. 2012;31(7):726–733. doi: 10.1177/0960327111433185.
  • Toyoguchi T, Takahashi S, Hosoya J, et al. Nephrotoxicity of vancomycin and drug interaction study with cilastatin in Rabbits. Antimicrob Agents Chemother. 1997;41(9):1985–1990. doi: 10.1128/AAC.41.9.1985.
  • Khalaf MM, Hassan SM, Sayed AM, et al. Ameliorate impacts of scopoletin against vancomycin-induced intoxication in rat model through modulation of Keap1-Nrf2/HO-1 and IκBα-P65 NF-κB/P38 MAPK signaling pathways: molecular study, molecular docking evidence and network pharmacology analysis. Int Immunopharmacol. 2022;102:108382. doi: 10.1016/j.intimp.2021.108382.
  • Fouad AA, Albuali WH, Zahran A, et al. Protective effect of naringenin against gentami- cin-induced nephrotoxicity in rats. Environ Toxicol Pharmacol. 2014;38(2):420–429. doi: 10.1016/j.etap.2014.07.015.
  • Dalaklioglu S, Tekcan M, Gungor NE, et al. Role of the poly(ADP-ribose)polymerase activity in vancomycin-induced renal injury. Toxicol Lett. 2010;192(2):91–96. doi: 10.1016/j.toxlet.2009.10.002.
  • Kim HS, Lim SW, Jin L, et al. The protective effect of febuxostat on chronic tacrolimus-induced nephrotoxicity in rats. Nephron. 2017;135(1):61–71. doi: 10.1159/000449289.
  • Davis CA, Nick HS, Agarwal A. Manganese superoxide dismutase attenuates cisplatin-induced renal injury: importance of superoxide. J Am Soc Nephrol. 2001;12(12):2683–2690. doi: 10.1681/ASN.V12122683.
  • Ahmida MHS. Protective role of curcumin in nephrotoxic oxidative damage induced by vancomycin in rats. Exp Toxicol Pathol. 2012;64(3):149–153. doi: 10.1016/j.etp.2010.07.010.
  • Gupta A, Biyani M, Khaira A. Vancomycin nephrotoxicity: myths and facts. Neth J Med. 2011;69(9):379–383.
  • Khaliq H, Jing W, Ke X, et al. Boron affects the development of the kidney through modulation of apoptosis, antioxidant capacity, and Nrf2 pathway in the African Ostrich chicks. Biol Trace Elem Res. 2018;186(1):226–237. doi: 10.1007/s12011-018-1280-7.
  • Kerasioti E, Stagos D, Tzimi A, et al. Increase in antioxidant activity by sheep/goat whey protein through nuclear factor-like 2 (Nrf2) is cell type dependent. Food Chem Toxicol. 2016;97:47–56. doi: 10.1016/j.fct.2016.08.022.
  • Cantaluppi V, Quercia AD, Dellepiane S, et al. Interaction between systemic inflammation and renal tubular epithelial cells. Nephrol Dial Transplant. 2014;29(11):2004–2011. doi: 10.1093/ndt/gfu046.
  • Tagde P, Tagde P, Islam F, et al. The multifaceted role of curcumin in advanced nanocurcumin form in the treatment and management of chronic disorders. Molecules. 2021;26(23):7109. doi: 10.3390/molecules26237109.
  • Kabir MT, Rahman MH, Akter R, et al. Potential role of curcumin and its nanoformulations to treat various types of cancers. Biomolecules. 2021;11(3):392. doi: 10.3390/biom11030392.
  • Liu G, Qu J, Shen X. NF-κB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta. 2008;1783(5):713–727. doi: 10.1016/j.bbamcr.2008.01.002.
  • Gao W, Guo L, Yang Y, et al. Dissecting the crosstalk between Nrf2 and NF-κB response pathways in drug-induced toxicity. Front Cell Dev Biol. 2022;9:1–21. doi: 10.3389/fcell.2021.809952.
  • Khalaf MM, Hassan SM, Sayed AM, et al. Carvacrol mitigates vancomycin-induced nephrotoxicity via regulation of IkBα/p38MAPK and Keap1/Nrf2 signaling pathways: an experimental study with in silico evidence. Eur Rev Med Pharmacol Sci. 2022;26(23):8738–8755. doi: 10.26355/eurrev_202212_30546.
  • Xu W, Mao Z, Zhao B, et al. Vitamin C attenuates vancomycin induced nephrotoxicity through the reduction of oxidative stress and inflammation in HK-2 cells. Ann Palliat Med. 2021;10(2):1748–1754. doi: 10.21037/apm-20-694.
  • Khames A, Khalaf MM, Gad AM, et al. Ameliorative effects of sildenafil and/or febuxostat on doxorubicin-induced nephrotoxicity in rats. Eur J Pharmacol. 2017;805:118–124. doi: 10.1016/j.ejphar.2017.02.046.
  • Li Y, Chen F, Deng L, et al. Febuxostat attenuates paroxysmal atrial fibrillation-induced regional endothelial dysfunction. Thromb Res. 2017;149:17–24. doi: 10.1016/j.thromres.2016.11.011.
  • Nomura J, Busso N, Ives A, et al. Xanthine oxidase inhibition by febuxostat attenuates experimental atherosclerosis in mice. Sci Rep. 2014;4(1):4554. doi: 10.1038/srep04554.
  • Mizuno Y, Yamamotoya T, Nakatsu Y, et al. Xanthine oxidase inhibitor febuxostat exerts an anti-inflammatory action and protects against diabetic nephropathy development in KK-Ay obese diabetic mice. IJMS. 2019;20(19):4680. doi: 10.3390/ijms20194680.
  • Komers R, Xu B, Schneider J, et al. Effects of xanthine oxidase inhibition with febuxostat on the development of nephropathy in experimental type 2 diabetes. Br J Pharmacol. 2016;173(17):2573–2588. doi: 10.1111/bph.13527.
  • He L, Fan Y, Xiao W, et al. Febuxostat attenuates ER stress mediated kidney injury in a rat model of hyperuricemic nephropathy. Oncotarget. 2017;8(67):111295–111308. doi: 10.18632/oncotarget.22784.
  • Ran J, Xu G, Ma H, et al. Febuxostat attenuates renal damage besides exerting hypouricemic effect in streptozotocin-induced diabetic rats. Int J Nephrol. 2017;2017:2739539. doi: 10.1155/2017/2739539.
  • Helmy MM, Helmy MW, El-Mas MM. Additive renoprotection by pioglitazone and fenofibrate against inflammatory, oxidative and apoptotic manifestations of cisplatin nephrotoxicity: modulation by PPARs. PLoS One. 2015;10(11):e0142303. doi: 10.1371/journal.pone.0142303.
  • Ratner RE, Parikh S, Tou C. Efficacy, safety and tolerability of tesaglitazar when added to the therapeutic regimen of poorly controlled insulin-treated patients with type 2 diabetes. Diab Vasc Dis Res. 2007;4(3):214–221. doi: 10.3132/dvdr.2007.042.
  • Elsisi AEE, Sokar SS, Shalaby MF, et al. Nephroprotective effects of febuxostat and/or mirtazapine against gentamicin-induced nephrotoxicity through modulation of ERK 1/2, NF-κB and MCP1, Expert. Expert Rev Clin Pharmacol. 2021;14(8):1039–1050. doi: 10.1080/17512433.2021.1933435.
  • Omizo H, Tamura Y, Morimoto C, et al. Cardio-renal protective effect of the xanthine oxidase inhibitor febuxostat in the 5/6 nephrectomy model with hyperuricemia. Sci Rep. 2020;10(1):9326. doi: 10.1038/s41598-020-65706-6.
  • Yang K, Choi WJ, Chang Y, et al. Inhibition of xanthine oxidase protects against diabetic kidney disease through the amelioration of oxidative stress via VEGF/VEGFR Axis and NOX-FoxO3a-eNOS signaling pathway. IJMS. 2023;24(4):3807. doi: 10.3390/ijms24043807.
  • Yaribeygi H, Mohammadi MT, Rezaee R, et al. Fenofibrate improves renal function by amelioration of NOX-4, IL-18, and p53 expression in an experimental model of diabetic nephropathy. J Cell Biochem. 2018;119(9):7458–7469. doi: 10.1002/jcb.27055.
  • Ibrahim MA, El-Sheikh AAK, Khalaf HM, et al. Protective effect of peroxisome proliferator activator receptor (PPAR)-α and -γ ligands against methotrexate-induced nephrotoxicity. Immunopharmacol Immunotoxicol. 2014;36(2):130–137. doi: 10.3109/08923973.2014.884135.
  • Park C, Ji H, Kim S, et al. Fenofibrate exerts protective effects against gentamicin-induced toxicity in cochlear hair cells by activating antioxidant enzymes. Int J Mol Med. 2017;39(4):960–968. doi: 10.3892/ijmm.2017.2916.
  • Alqahtani MJ, Negm WA, Saad HM, et al. Fenofibrate and Diosmetin in a rat model of testicular toxicity: new insight on their protective mechanism through PPAR-α/NRF-2/HO-1 signaling pathway. Biomed Pharmacother. 2023;165:115095. doi: 10.1016/j.biopha.2023.115095.
  • Yu P, Luo J, Song H, et al. N-acetylcysteine Ameliorates Vancomycin-induced nephrotoxicity by inhibiting oxidative stress and apoptosis in the in vivo and in vitro models. Int J Med Sci. 2022;19(4):740–752. doi: 10.7150/ijms.69807.
  • Pang H, Qin X, Liu T, et al. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as early biomarkers for predicting vancomycin-associated acute kidney injury: a prospective study. Eur Rev Med Pharmacol Sci. 2017;21(18):4203–4213.
  • Pais GM, Avedissian SN, O’Donnell JN, et al. Comparative performance of urinary biomarkers for vancomycin-induced kidney injury according to timeline of injury. Antimicrob. Agents Chemother. 2019;63:e00079–19.
  • Abdel-Wahab BA, El-Shoura EAM, Shafiuddin Habeeb M, et al. Febuxostat alleviates arsenic trioxide-induced renal injury in rats: insights on the crosstalk between NLRP3/TLR4, Sirt-1/NF-κB/TGF-β signaling Pathways, and miR-23b-3p, miR-181a-5b expression. Biochem Pharmacol. 2023;216:115794. doi: 10.1016/j.bcp.2023.115794.
  • Ovcharenko E, Hansen MK, Goltsman I, et al. Peroxisome proliferator-activated receptor alpha and Alpha/Gamma agonists do not cause impairment in renal function in the rat. Nephron Physiol. 2010;115(3):p21–30. doi: 10.1159/000314541.
  • Gharishvandi F, Kazerouni F, Ghanei E, et al. Comparative assessment of neutrophil gelatinase-associated lipocalin (NGAL) and Cystatin C as early biomarkers for early detection of renal failure in patients with hypertension. Iran Biomed. J. 2015;19:76–81.
  • Sezai A, Soma M, Nakata K, et al. Comparison of febuxostat and allopurinol for hyperuricemia in cardiac surgery patients (NU-FLASH Trial. Circ J. 2013;77(8):2043–2049. doi: 10.1253/circj.cj-13-0082.
  • Ncube V, Starkey B, Wang T. Effect of fenofibrate treatment for hyperlipidaemia on serum creatinine and cystatin C. Ann Clin Biochem. 2012;49(Pt 5):491–493. doi: 10.1258/acb.2012.011163.
  • Ma Y, Shi M, Wang Y, et al. PPARγ and its agonists in chronic kidney disease. Int J Nephrol. 2020;2020:2917474. doi: 10.1155/2020/2917474.
  • Corrales P, Izquierdo-Lahuerta A, Medina-Gómez G. Maintenance of kidney metabolic homeostasis by PPAR gamma. IJMS. 2018;19(7):2063. doi: 10.3390/ijms19072063.
  • Emeka P, Rasool S, Morsy M, et al. Protective effects of lutein against vancomycin-induced acute renal injury in mice via upregulation of peroxisome proliferator-activated receptor gamma/nuclear factor erythroid 2-related factor 2 and inhibition nuclear factor-kappaB/caspase 3. Korean J Physiol Pharmacol. 2021;25(4):321–331. doi: 10.4196/kjpp.2021.25.4.321.
  • Diep QN, Schiffrin EL. Increased expression of peroxisome proliferator-activated receptor-alpha and -gamma in blood vessels of spontaneously hypertensive rats. Hypertension. 2001;38(2):249–254. doi: 10.1161/01.hyp.38.2.249.
  • Zhang B, Lo C, Shen L, et al. The role of vanin-1 and oxidative stress-related pathways in distinguishing acute and chronic pediatric ITP. Blood. 2011;117(17):4569–4579. doi: 10.1182/blood-2010-09-304931.
  • Humanes B, Jado JC, Camaño S, et al. Protective effects of cilastatin against vancomycin-induced nephrotoxicity. Biomed Res Int. 2015;2015:704382. doi: 10.1155/2015/704382.
  • Zhu Y, Jin H, Huo X, et al. Protective effect of Rhein against vancomycin-induced nephrotoxicity through regulating renal transporters and Nrf2 pathway. Phytother Res. 2022;36(11):4244–4262. doi: 10.1002/ptr.7559.
  • Im DS, Shin HJ, Yang KJ, et al. Cilastatin attenuates vancomycin-induced nephrotoxicity via P-glycoprotein. Toxicol Lett. 2017;277:9–17. doi: 10.1016/j.toxlet.2017.05.023.
  • Khan SI, Malhotra RK, Rani N, et al. Febuxostat modulates MAPK/NF- κ Bp65/TNF- α signaling in cardiac ischemia-reperfusion injury. Oxid Med Cell Longev. 2017;2017:8095825. doi: 10.1155/2017/8095825.
  • Krishnamurthy B, Rani N, Bharti S, et al. Febuxostat ameliorates doxorubicin-induced cardiotoxicity in rats. Chem Biol Interact. 2015;237:96–103. doi: 10.1016/j.cbi.2015.05.013.
  • Kortam MA, Alawady AS, Sadik NA, et al. Fenofibrate mitigates testosterone induced benign prostatic hyperplasia via regulation of Akt/FOXO3a pathway and modulation of apoptosis and proliferation in rats. Arch Biochem Biophys. 2022;723:109237. doi: 10.1016/j.abb.2022.109237.
  • Guzel S, Sahinogullari ZU, Canacankatan N, et al. Potential renoprotective effects of silymarin against vancomycin-induced nephrotoxicity in rats. Drug Chem Toxicol. 2020;43(6):630–636. doi: 10.1080/01480545.2019.1584208.
  • Ibrahim YF, Fadl RR, Ibrahim S, et al. Protective effect of febuxostat in sepsis-induced liver and kidney injuries after cecal ligation and puncture with the impact of xanthine oxidase, interleukin 1 β, and c-Jun N-terminal kinases. Hum Exp Toxicol. 2020;39(7):906–919. doi: 10.1177/0960327120905957.
  • Kaur J, Kaur T, Sharma AK, et al. Fenofibrate attenuates ischemia reperfusion‐induced acute kidney injury and associated liver dysfunction in rats. Drug Dev Res. 2021;82(3):412–421. doi: 10.1002/ddr.21764.
  • Oidor-Chan VH, Hong E, Pérez-Severiano F, et al. Fenofibrate plus metformin produces cardioprotection in a type 2 diabetes and acute myocardial infarction model. PPAR Res. 2016;2016:8237264. doi: 10.1155/2016/8237264.
  • Yang FJ, He Y, Zhou J. Fenofibrate pre-treatment suppressed inflammation by activating phosphoinositide 3 kinase/protein kinase B (PI3K/Akt) signaling in renal ischemia-reperfusion injury. J Huazhong Univ Sci Technolog Med Sci. 2015;35(1):58–63. doi: 10.1007/s11596-015-1389-2.
  • Gelosa P, Banfi C, Gianella A, et al. Peroxisome proliferator-activated receptor α agonism prevents renal damage and the oxidative stress and inflammatory processes affecting the brains of stroke-prone rats. J Pharmacol Exp Ther. 2010;335(2):324–331. doi: 10.1124/jpet.110.171090.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.