0
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Liraglutide alleviates sepsis-induced acute lung injury by regulating pulmonary surfactant through inhibiting autophagy

, , , , &
Received 29 Jun 2023, Accepted 22 Jul 2024, Published online: 07 Aug 2024

References

  • Zhao H, Chen H, Xiaoyin M, et al. Autophagy activation improves lung injury and inflammation in sepsis. Inflammation. 2019;42(2):426–439. doi: 10.1007/s10753-018-00952-5.
  • Sadowitz B, Roy S, Gatto LA, et al. Lung injury induced by sepsis: lessons learned from large animal models and future directions for treatment. Expert Rev Anti Infect Ther. 2011;9(12):1169–1178. doi: 10.1586/eri.11.141.
  • Gong H, Chen Y, Chen M, et al. Advanced development and mechanism of sepsis-related acute respiratory distress syndrome. Front Med (Lausanne). 2022;9:1043859. doi: 10.3389/fmed.2022.1043859.
  • Glasser JR, Mallampalli RK. Surfactant and its role in the pathobiology of pulmonary infection. Microbes Infect. 2012;14(1):17–25. doi: 10.1016/j.micinf.2011.08.019.
  • Wang S, Li Z, Wang X, et al. The role of pulmonary surfactants in the treatment of acute respiratory distress syndrome in COVID-19. Front Pharmacol. 2021;12:698905. doi: 10.3389/fphar.2021.698905.
  • Han S, Mallampalli RK. The role of surfactant in lung disease and host defense against pulmonary infections. Ann Am Thorac Soc. 2015;12(5):765–774. doi: 10.1513/AnnalsATS.201411-507FR.
  • Zhang L, Meng Q, Yepuri N, et al. Surfactant proteins-A and -D attenuate LPS-induced apoptosis in primary intestinal epithelial cells (IECs). Shock. 2018;49(1):90–98. doi: 10.1097/SHK.0000000000000919.
  • Yang F, Zhang J, Yang Y, et al. Regulatory roles of human surfactant protein B variants on genetic susceptibility to Pseudomonas aeruginosa pneumonia-induced sepsis. Shock. 2020;54(4):507–519. doi: 10.1097/SHK.0000000000001494.
  • Lopez-Rodriguez E, Perez-Gil J. Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy. Biochim Biophys Acta. 2014;1838(6):1568–1585. doi: 10.1016/j.bbamem.2014.01.028.
  • Baudouin S. Innate immune defense on the attack in acute lung injury. Crit Care Med. 2010;38(1):328–329. doi: 10.1097/CCM.0b013e3181b3a81e.
  • Lee YS, Jun HS. Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediators Inflamm. 2016;2016:3094642–3094611. doi: 10.1155/2016/3094642.
  • Pyke C, Heller RS, Kirk RK, et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology. 2014;155(4):1280–1290. doi: 10.1210/en.2013-1934.
  • Viby NE, Isidor MS, Buggeskov KB, et al. Glucagon-like peptide-1 (GLP-1) reduces mortality and improves lung function in a model of experimental obstructive lung disease in female mice. Endocrinology. 2013;154(12):4503–4511. doi: 10.1210/en.2013-1666.
  • Steven S, Hausding M, Kröller-Schön S, et al. Gliptin and GLP-1 analog treatment improves survival and vascular inflammation/dysfunction in animals with lipopolysaccharide-induced endotoxemia. Basic Res Cardiol. 2015;110(2):6. doi: 10.1007/s00395-015-0465-x.
  • Zhu T, Wu XL, Zhang W, et al. Glucagon like peptide-1 (GLP-1) modulates OVA-induced airway inflammation and mucus secretion involving a protein kinase A (PKA)-dependent nuclear factor-kappaB (NF-kappaB) signaling pathway in mice. Int J Mol Sci. 2015;16(9):20195–20211. doi: 10.3390/ijms160920195.
  • Zhu T, Li C, Zhang X, et al. GLP-1 analogue liraglutide enhances SP-A expression in LPS-induced acute lung Injury through the TTF-1 signaling pathway. Mediators Inflamm. 2018;2018:3601454–3601414. doi: 10.1155/2018/3601454.
  • Xie Z, Enkhjargal B, Wu L, et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142–151. doi: 10.1016/j.neuropharm.2017.09.040.
  • Xu J, Wei G, Wang J, et al. Glucagon-like peptide-1 receptor activation alleviates lipopolysaccharide-induced acute lung injury in mice via maintenance of endothelial barrier function. Lab Invest. 2019;99(4):577–587. doi: 10.1038/s41374-018-0170-0.
  • Chen P, Shi X, Xu X, et al. Liraglutide ameliorates early renal injury by the activation of renal FoxO1 in a type 2 diabetic kidney disease rat model. Diabetes Res Clin Pract. 2018;137:173–182. doi: 10.1016/j.diabres.2017.09.006.
  • Zhang Y, Ling Y, Yang L, et al. Liraglutide relieves myocardial damage by promoting autophagy via AMPK-mTOR signaling pathway in Zucker diabetic fatty rat. Mol Cell Endocrinol. 2017;448:98–107. doi: 10.1016/j.mce.2017.03.029.
  • Bai Y, Lian P, Li J, et al. The active GLP-1 analogue liraglutide alleviates H9N2 influenza virus-induced acute lung injury in mice. Microb Pathog. 2021;150:104645. doi: 10.1016/j.micpath.2020.104645.
  • Li R, Ren T, Zeng J. Mitochondrial coenzyme Q protects sepsis-induced acute lung injury by activating PI3K/Akt/GSK-3beta/mTOR pathway in rats. Biomed Res Int. 2019;2019:5240898–5240899. doi: 10.1155/2019/5240898.
  • Zhou F, Zhang Y, Chen J, et al. Liraglutide attenuates lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol. 2016;791:735–740. doi: 10.1016/j.ejphar.2016.10.016.
  • Zhou W, Shao W, Zhang Y, et al. Glucagon-like peptide-1 receptor mediates the beneficial effect of liraglutide in an acute lung injury mouse model involving the thioredoxin-interacting protein. Am J Physiol Endocrinol Metab. 2020;319(3):E568–E578. doi: 10.1152/ajpendo.00292.2020.
  • Raghavendran K, Willson D, Notter RH. Surfactant therapy for acute lung injury and acute respiratory distress syndrome. Crit Care Clin. 2011;27(3):525–559. doi: 10.1016/j.ccc.2011.04.005.
  • Lin Y, Yang Y. MiR-24 inhibits inflammatory responses in LPS-induced acute lung injury of neonatal rats through targeting NLRP3. Pathol Res Pract. 2019;215(4):683–688. doi: 10.1016/j.prp.2018.12.028.
  • Yang Y, Li Q, Tan F, et al. Mechanism of IL-8-induced acute lung injury through pulmonary surfactant proteins A and B. Exp Ther Med. 2020;19(1):287–293. doi: 10.3892/etm.2019.8192.
  • Guo L, Wu X, Zhao S, et al. Autophagy inhibition protects from alveolar barrier dysfunction in LPS-induced ALI mice by targeting alveolar epithelial cells. Respir Physiol Neurobiol. 2021;283:103532. doi: 10.1016/j.resp.2020.103532.
  • Xiong X, Dou J, Shi J, et al. RAGE inhibition alleviates lipopolysaccharides-induced lung injury via directly suppressing autophagic apoptosis of type II alveolar epithelial cells. Respir Res. 2023;24(1):24. doi: 10.1186/s12931-023-02332-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.