Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 29, 2013 - Issue 10
374
Views
5
CrossRef citations to date
0
Altmetric
Articles

Evaluation of the ability of C. albicans to form biofilm in the presence of phage-resistant phenotypes of P. aeruginosa

, , , , , , & show all
Pages 1169-1180 | Received 22 Feb 2013, Accepted 31 Jul 2013, Published online: 24 Sep 2013

References

  • Bandara HM, Cheung KBP, Watt RM, Jin LJ, Samaranayake LP. 2013. Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development. Mol Oral Microbiol. 28:54–69.
  • Bandara HM, Lam OL, Watt RM, Jin LJ, Samaranayake LP. 2010. Bacterial lipopolysaccharides variably modulate in vitro biofilm formation of Candida species. J Med Microbiol. 59:1225–1234.
  • Bandara HM, Yau J, Watt RM, Jin LJ, Samaranayake LP. 2009. Escherichia coli and its lipopolysaccharide modulate in vitro Candida biofilm formation. J Med Microbiol. 58:1623–1631.
  • Bandara HM, Yau J, Watt RM, Jin LJ, Samaranayake LP. 2010. Pseudomonas aeruginosa inhibits in vitro Candida biofilm development. BMC Microbiol. 10:125.
  • Calderone RA, Fonzi WA. 2001. Virulence factors of Candida albicans. Trends Microbiol. 9:327–335
  • Ceyssens P-J, Glonti T, Kropinski AM, Lavigne R, Chanishvili N, Kulakov L, Lashkhi N, Tediashvili M, Merabishvili M. 2011. Phenotypic and genotypic variations within a single bacteriophage species. Virol J. 8:134.
  • Curtin JJ, Donlan RM. 2006. Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob Agents Chemother. 50:1268–1275.
  • de Bentzmann S, Plésiat P. 2011. The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environ Microbiol. 13:1655–1665.
  • de Kievit TR, Dasgupta T, Schweizer H, Lam JS. 1995. Molecular cloning and characterization of the rfc gene of Pseudomonas aeruginosa (serotype O5). Mol Microbiol. 16:565–574.
  • Donlan RM. 2009. Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol. 17:66–72.
  • Driscoll JA, Brody SL, Kollef MH. 2007. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs. 67:351–368.
  • Emara MG, Tout NL, Kaushik A, Lam JS. 1995. Diverse VH and V kappa genes encode antibodies to Pseudomonas aeruginosa LPS. J Immunol. 155:3912–3921.
  • Filippov AA, Sergueev KV, He Y, Huang X-Z, Gnade BT, Mueller AJ, Fernandez-Prada CM. 2011. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice. PLoS ONE. 6:e25486.
  • Fomsgaard A, Freudenberg MA, Galanos C. 1990. Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels. J Clin Microbiol. 28:2627–2631.
  • Hanlon GW. 2007. Bacteriophages: an appraisal of their role in the treatment of bacterial infections. Int J Antimicrob Agents. 30:118–128.
  • Hitchcock PJ, Brown TM. 1983. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol. 154:269–277.
  • Hogan DA, Kolter R. 2002. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science. 296:2229–2232.
  • Hogan DA, Vik A, Kolter R. 2004. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol. 54:1212–1223.
  • Holcombe LJ, McAlester G, Munro CA, Enjalbert B, Brown AJ, Gow NA, Ding C, Butler G, O’Gara F, Morrissey JP. 2010. Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans. Microbiology. 156:1476–1486.
  • Kim S, Rahman M, Seol SY, Yoon SS, Kim J. 2012. Pseudomonas aeruginosa bacteriophage PA1Ø requires type IV pili for infection and shows broad bactericidal and biofilm removal activities. Appl Environ Microbiol. 78:6380–6385.
  • Kropinski AM. 2008. Measurement of the bacteriophage inactivation kinetics with purified receptors : methods and protocols, volume 1: isolation, characterization, and interactions. Humana Press. 501:157–160.
  • Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP. 2008. Enumeration of bacteriophages by double agar overlay plaque assay. Bacteriophages: methods and protocols, volume 1: isolation, characterization, and interactions. Humana Press. 501:69–76.
  • Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680–685.
  • Lam JS, Taylor VL, Salim ST, Hao Y, Kocíncová D. 2011. Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front Microbiol. 2: 118.
  • Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H, Imai S. 2005. Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother. 11:211–219.
  • Mazzocco A, Waddell TE, Lingohr E, Johnson RP. 2008. Enumeration of bacteriophages using the small drop plaque assay system.. . In: Clokie M, Kropinski A, editors. Bacteriophages: methods and protocols, volume 501: isolation, characterization and interactions. New York (NY): Humana Press; p. 81–85.
  • McAlester G, O’Gara F, Morrissey JP. 2008. Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans. J Med Microbiol. 57:563–569.
  • McVay CS, Velasquez M, Fralick JA. 2007. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother. 51:1934–1938.
  • Mittal R, Aggarwal S, Sharma S, Chhibber S, Harjai K. 2009. Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. J Infect Public Health. 2:101–111.
  • Molero G, Diez-Orejas R, Navarro-Garcia F, Monteoliva L, Pla J, Gil C, Sánchez-Pérez M, Nombela C. 1998. Candida albicans: genetics, dimorphism and pathogenicity. Int Microbiol. 1:95–106.
  • Nseir S, Ader F. 2009. Pseudomonas aeruginosa and Candida albicans: do they really need to stick together? Crit Care Med. 37:1164–1166.
  • Pierce GE. 2005. Pseudomonas aeruginosa, Candida albicans, and device-related nosocomial infections: implications, trends, and potential approaches for control. J Ind Microbiol Biotechnol. 32:309–318.
  • Pires D, Sillankorva S, Faustino A, Azeredo J. 2011. Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Res Microbiol. 162:798–806.
  • Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS. 2000. Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology. 146:2803–2814.
  • Rocchetta HL, Burrows LL, Pacan JC, Lam JS. 1998. Three rhamnosyltransferases responsible for assembly of the A-band D-rhamnan polysaccharide in Pseudomonas aeruginosa: a fourth transferase, WbpL, is required for the initiation of both A-band and B-band lipopolysaccharide synthesis. Mol Microbiol. 28:1103–1119.
  • Rocchetta HL, Lam JS. 1997. Identification and functional characterization of an ABC transport system involved in polysaccharide export of A-band lipopolysaccharide in Pseudomonas aeruginosa. J Bacteriol. 179:4713–4724.
  • Rocchetta HL, Pacan JC, Lam JS. 1998. Synthesis of the A-band polysaccharide sugar D-rhamnose requires Rmd and WbpW: identification of multiple AlgA homologues, WbpW and ORF488, in Pseudomonas aeruginosa. Mol Microbiol. 29:1419–1434.
  • Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual. New York (NY): Cold Spring Harbor Laboratory Press.
  • Sillankorva S, Neubauer P, Azeredo J. 2008. Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnol. 8:79.
  • Silva S, Henriques M, Martins A, Oliveira R, Williams D, Azeredo J. 2009. Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Med Mycol. 47:681–689.
  • Silva S, Henriques M, Oliveira R, Williams D, Azeredo J. 2010. In vitro biofilm activity of non-Candida albicans Candida species. Curr Microbiol. 61:534–540.
  • Tait K, Skillman LC, Sutherland IW. 2002. The efficacy of bacteriophage as a method of biofilm eradication. Biofouling. 18:305–311.
  • van Christian D. 2007. Pseudomonas aeruginosa bloodstream infections: how should we treat them? Int J Antimicrob Agents. 30:71–75.
  • Van Delden C, Iglewski BH. 1998. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis. 4:551–560.
  • Wargo MJ, Hogan DA. 2006. Fungal-bacterial interactions: a mixed bag of mingling microbes. Curr Opin Microbiol. 9:359–364.
  • Weber-Dabrowska B, Mulczyk M, Górski A. 2001. Bacteriophage therapy for infections in cancer patients. Clin Appl Immunol Rev. 1:131–134
  • Weber-Dabrowska B, Mulczyk M, Górski A. 2003. Bacteriophages as an efficient therapy for antibiotic-resistant septicemia in man. Transplant Proceed. 35:1385–1386.
  • Wright A, McConnell M, Kanegasaki S. 1980. Lipopolysaccharide as a bacteriophage receptor. In: Randell LL, Philipson L, editors. Virus receptors: receptors and recognition. London: Chapman and Hall; p. 28–57.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.