Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 29, 2013 - Issue 10
1,907
Views
37
CrossRef citations to date
0
Altmetric
Articles

Iron cycling at corroding carbon steel surfaces

, , , &
Pages 1243-1252 | Received 10 Jun 2013, Accepted 15 Aug 2013, Published online: 07 Oct 2013

References

  • ASTM Standard G1-03. 2003. Standard practice for preparing, cleaning, and evaluating corrosion test specimens. In: ASTM handbook 3.02 corrosion of metals; wear and erosion. West Conshohocken, PA: ASTM International; p. 17–25.
  • ASTM Standard G5-94. 2004. Standard reference test method for making potentiostatic and potentiodynamic anodic polarization measurement. In: ASTM handbook 3.02 corrosion of metals; wear and erosion. West Conshohocken, PA: ASTM International; p. 45–56.
  • ASTM Standard G59-97. 2003. Standard test method for conducting potentiodynamic polarization resistance measurements. In: ASTM handbook 3.02 corrosion of metals; wear and erosion. West Conshohocken, PA: ASTM International; p. 230–233.
  • BanfieldJF, WelchSA, ZhangHZ, EbertTT, PennRL. 2000. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science. 289:751–754.
  • BlotheM, RodenEE. 2009. Microbial iron redox cycling in a circumneutral-pH groundwater seep. Appl Environ Microbiol. 75:468–473.
  • ChanCS, FakraSC, EmersonD, FlemingEJ, EdwardsKJ. 2011. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J. 5:717–727.
  • ColemanML, HedrickDB, LovleyDR, WhiteDC, PyeK. 1993. Reduction of Fe(III) in sediments by sulfate-reducing bacteria. Nature. 361:436–438.
  • DangHY, ChenRP, WangL, ShaoSD, DaiLQ, YeY, GuoLZ, HuangGQ, KlotzMG. 2011. Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon- and Zeta-proteobacteria in Pacific Ocean coastal seawaters. Environ Microbiol. 13:3059–3074.
  • DruschelGK, EmersonD, SutkaR, SucheckiP, LutherGW. 2008. Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms. Geochim Cosmochim Acta. 72:3358–3370.
  • DubielM, HsuCH, ChienCC, MansfeldF, NewmanDK. 2002. Microbial iron respiration can protect steel from corrosion. Appl Environ Microbiol. 68:1440–1445.
  • EmersonD. 2009. Potential for iron-reduction and iron-cycling in iron oxyhydroxide-rich microbial mats at Loihi Seamount. Geomicrobiol J. 26:639–647.
  • EmersonD, FloydMM. 2005. Enrichment and isolation of iron-oxidizing bacteria at neutral pH. Environ Microbiol. 397:112–123.
  • EmersonD, MoyerCL. 1997. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol. 63:4784–4792.
  • EmersonD, RevsbechNP. 1994. Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark – field studies. Appl Environ Microbiol. 60:4022–4031.
  • FerrisFG. 2005. Biogeochemical properties of bacteriogenic iron oxides. Geomicrobiol J. 22:79–85.
  • GerkeTL, MaynardJB, SchockMR, LytleDL. 2008. Physiological characterization of five iron tubercles from a single drinking water distribution system: possible new insights on their formation and growth. Corros Sci. 50:2030–2039.
  • GerkeTL, ScheckelKG, RayRI, LittleBJ. 2012. Can dynamic bubble templating play a role in corrosion product morphology? Corrosion. 68:025004-1–025004-7.
  • GuillardRR, RytherJH. 1962. Studies of marine planktonic diatoms .1. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol. 8:229–239.
  • GuillardRRL. 1975. Culture of phytoplankton for feeding marine invertebrates. In: SmithWL, ChanleyMH, editors. Culture of marine invertebrate animals. New York, NY: Plenum Press; p. 26–60.
  • HandleyKM, BoothmanC, MillsRA, PancostRD, LloydJR. 2010. Functional diversity of bacteria in a ferruginous hydrothermal sediment. ISME J. 4:1193–1205.
  • HerreraLK, VidelaHA. 2009. Role of iron-reducing bacteria in corrosion and protection of carbon steel. Int Biodeter Biodegr. 63:891–895.
  • HicksRE. 2007. Structure of bacterial communities associated with accelerated corrosive loss of port transportation infrastructure. Final report for Great Lakes Maritime Research Institute. Great Lakes Maritime Research Institute, MN: Great Lakes Maritime Research Institute. Available from: http://www.glmri.org/research/completedstudies/Tab5.pdf.
  • JamesRE, FerrisFG. 2004. Evidence for microbial-mediated iron oxidation at a neutrophilic groundwater spring. Chem Geol. 212:301–311.
  • KobrinG. 1976. Corrosion by microbiological organisms in natural waters. Mater Performance. 15:38–43.
  • LangleyS, GaultAG, IbrahimA, TakahashiY, RenaudR, FortinD, ClarkID, FerrisFG. 2009. Sorption of strontium onto bacteriogenic iron oxides. Environ Sci Technol. 43:1008–1014.
  • LarsenI, LittleBJ, NealsonK, RayRI, StoneA, TianJ. 1998. Manganite reduction by Shewanella putrefaciens mr-4. Am Mineral. 83:1564–1572.
  • LarsenO, PostmaD. 2001. Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite. Geochim Cosmochim Acta. 65:1367–1379.
  • LeeJS, RayRI, LemieuxEJ, FalsterAU, LittleBJ. 2004. An evaluation of carbon steel corrosion under stagnant seawater conditions. Biofouling. 20:237–247.
  • LittleBJ, GerchakovSM, UdeyL. 1987. A method for the sterilization of natural seawater. J Microbiol Methods. 7:193–200.
  • LittleBJ, LeeJS. 2007. Microbiologically influenced corrosion. Hoboken, NJ: Wiley.
  • LittleBJ, RayRI, LeeJS. 2010. Tubercles and localized corrosion on carbon steel. Corros Manage Mag. 98:12–15.
  • LittleBJ, WagnerPA, HartKR, RayRI, LavoieDM, NealsonK, AguilarC. 1997. The role of metal-reducing bacteria in microbiologically influenced corrosion. CORROSION/97, New Orleans, LA. Paper no. 215. Houston, TX: NACE International.
  • LovleyDR, StolzJF, NordGL, PhillipsEJP. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature. 330:252–254.
  • McBethJM, LittleBJ, RayRI, FarrarKM, EmersonD. 2011. Neutrophilic iron-oxidizing ‘Zetaproteobacteria’ and mild steel corrosion in nearshore marine environments. Appl Environ Microbiol. 77:1405–1412.
  • McNeilMB, OdomAL. 1994. Thermodynamic prediction of microbiologically influenced corrosion (MIC) by sulfate-reducing bacteria (SRB). In: KearnsJR, LittleBJ, editors. Microbiologically influenced corrosion testing. Philadelphia, PA: ASTM; p. 173–179.
  • MiotJ, BenzeraraK, ObstM, KapplerA, HeglerF, SchadlerS, BouchezC, GuyotF, MorinG. 2009. Extracellular iron biomineralization by photoautotrophic iron-oxidizing bacteria. Appl Environ Microbiol. 75:5586–5591.
  • MyersC, NealsonKH. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science. 240:1319–1321.
  • NealsonK, LittleBJ. 1997. Breathing manganese and iron: solid-state respiration. In: NeidlemanSL, LaskinAI, editors. Advances in applied microbiology. San Diego, CA: Academic Press; p. 213–239.
  • RayR, LittleB. 2003. Environmental electron microscopy applied to biofilms. In: LensP, MoranAP, MahonyT, StoodleyP, O’FlahertyV, editors. Biofilms in medicine, industry and environmental biotechnology. London: IWA; p. 331–351.
  • RayRI, LeeJS, LittleBJ. 2009. Factors contributing to corrosion of steel pilings in Duluth-Superior Harbor. Corrosion. 65:707–717.
  • RayRI, LeeJS, LittleBJ, GerkeTL. 2011. The anatomy of tubercles on steel. CORROSION/2011, Houston, TX. Paper no. 11217. Houston, TX: NACE International.
  • RodenEE, McBethJM, BlotheM, Percak-DennettEM, FlemingEJ, HolyokeRR, LutherGW, EmersonD, SchieberJ. 2012. The microbial ferrous wheel in a neutral pH groundwater seep. Front Microbiol. 3:1–18.
  • SharpleyJM. 1961. Microbiological corrosion in waterfloods. Corrosion. 17:92–96.
  • StookeyLL. 1970. Ferrozine – a new spectrophotometric reagent for iron. Anal Chem. 42:779–781.
  • StraubKL, BenzM, SchinkB. 2001. Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol. 34:181–186.
  • Szklarska-SmialowskaZ. 2005. Pitting and crevice corrosion. Houston, TX: NACE International.
  • TonerBM, BerquoTS, MichelFM, SorensenJV, TempletonAS, EdwardsKJ. 2012. Mineralogy of iron microbial mats from Loihi Seamount. Front Microbiol. 3:1–18.
  • WangJJ, VollrathS, BehrendsT, BodelierPLE, MuyzerG, Meima-FrankeM, DenOudstenF, VanCappellenP, LaanbroekHJ. 2011. Distribution and diversity of Gallionella-like neutrophilic iron oxidizers in a tidal freshwater marsh. Appl Environ Microbiol. 77:2337–2344.
  • WeissJV, EmersonD, MegonigalJP. 2004. Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil. FEMS Microbiol Ecol. 48:89–100.