Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 31, 2015 - Issue 6
1,135
Views
82
CrossRef citations to date
0
Altmetric
Articles

Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm

, , , , , , , & show all
Pages 481-492 | Received 12 Feb 2015, Accepted 08 Jun 2015, Published online: 21 Jul 2015

References

  • Abdolahi A, Hamzah E, Ibrahim Z, Hashim S. 2014. Microbially influenced corrosion of steels by Pseudomonas aeruginosa. Corros Rev. 32:129–141.
  • Antony PJ, Raman RKS, Mohanram R, Kumar P, Raman R. 2008. Influence of thermal aging on sulfate-reducing bacteria (SRB)-influenced corrosion behaviour of 2205 duplex stainless steel. Corros Sci. 50:1858–1864.10.1016/j.corsci.2008.03.009
  • Badawy WA, Ismail KM, Fathi AM. 2005. Effect of Ni content on the corrosion behaviour of Cu–Ni alloys in neutral chloride solution. Electrochim Acta. 50:3603–3608.10.1016/j.electacta.2004.12.030
  • Beese P, Venzlaff H, Srinivasan J, Garrelfs J, Stratmann M, Mayrhofer KJJ. 2013. Monitoring of anaerobic microbially influenced corrosion via electrochemical frequency modulation. Electrochim Acta. 105:239–247.10.1016/j.electacta.2013.04.144
  • Busalmen JP, Vázquez M, Sánchez SRD. 2002. New evidence on the catalase mechanism of microbial corrosion. Electrochim Acta. 47:1857–1865.10.1016/S0013-4686(01)00899-4
  • Chinese National Standards. 2000. Method of nitric-hydrofluoric acids test for stainless steel. GB/T4334:4–2000.
  • Cournet A, Bergé M, Roques C, Bergel A, Délia ML. 2010. Electrochemical reduction of oxygen catalyzed by Pseudomonas aeruginosa. Electrochim Acta. 55:4902–4908.10.1016/j.electacta.2010.03.085
  • Elhoud A, Ezuber H, Deans W. 2010. Influence of cold work and sigma phase on the pitting corrosion behavior of 25 chromium super duplex stainless steel in 3.5% sodium chloride solution. Mater Corros. 61:199–204.10.1002/maco.v61:3
  • Enning D, Venzlaff H, Garrelfs J, Dinh HT, Meyer V, Mayrhofer K, Hassel AW, Stratmann M, Widdel F. 2012. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust: microbial iron corrosion under electroconductive crust. Environ Microbiol. 14:1772–1787.10.1111/j.1462-2920.2012.02778.x
  • Gorman JO, Humphreys H. 2012. Application of copper to prevent and control infection. Where are we now? J Hosp Infect. 81:1–7.
  • Hamzah E, Hussain MF, Ibrahim Z, Abdolahi A. 2013. Influence of Pseudomonas aeruginosa bacteria on corrosion resistance of 304 stainless steel. Corros Eng Sci Technol. 48:116–120.10.1179/1743278212Y.0000000052
  • Hamzah E, Hussain MF, Ibrahim Z, Abdolahi A. 2014. Corrosion behaviour of carbon steel in sea water medium in presence of Pseudomonas aeruginosa bacteria. Arab J Sci Eng. 39:6863–6870.10.1007/s13369-014-1264-7
  • Hermas AA, Ogura K, Takagi S, Adachi T. 1995. Effects of alloying additions on corrosion and passivation behaviors of type 304 stainless steel. Corrosion. 51:3–10.10.5006/1.3293575
  • Hidalgo G, Burns A, Herz E, Hay AG, Houston PL, Wiesner U, Lion LW. 2009. Functional tomographic fluorescence imaging of pH microenvironments in microbial biofilms by use of silica nanoparticle sensors. Appl Environ Microbiol. 75:7426–7435.10.1128/AEM.01220-09
  • Hong IT, Koo CH. 2005. Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel. Mater Sci Eng: A. 393:213–222.10.1016/j.msea.2004.10.032
  • Jeon S-H, Kim S-T, Lee I-S, Kim J-S, Kim K-T, Park Y-S. 2013. Effects of Cu on the precipitation of intermetallic compounds and the intergranular corrosion of hyper duplex stainless steels. Corros Sci. 66:217–224.10.1016/j.corsci.2012.09.023
  • Kear G, Barker BD, Stokes K, Walsh FC. 2004. Electrochemical corrosion behaviour of 90–10 Cu–Ni in chloride-based electrolytes. J Appl Electrochem. 34:659–669.10.1023/B:JACH.0000031164.32520.58
  • Lee J-S, Fushimi K, Nakanishi T, Hasegawa Y, Park Y-S. 2014. Corrosion behaviour of ferrite and austenite phases on super duplex stainless steel in a modified green-death solution. Corros Sci. 89:111–117.10.1016/j.corsci.2014.08.014
  • Li M, Nan L, Xu D, Ren G, Yang K. 2015. Antibacterial performance of Cu-bearing stainless steel against microorganisms in tap water. J Mater Sci Technol. 31:243–251.
  • Li S, Ren X, Ji X, Gui Y. 2014. Effects of microstructure changes on the superplasticity of 2205 duplex stainless steel. Mater Design. 55:146–151.
  • Liu W. 2014. Rapid MIC attack on 2205 duplex stainless steel pipe in a yacht. Eng Fail Anal. 42:109–120.10.1016/j.engfailanal.2014.04.001
  • Ma AL, Jiang S, Zheng Y, Ke W. 2015. Corrosion product film formed on the 90/10 copper–nickel tube in natural seawater: composition/structure and formation mechanism. Corros Sci. 91:245–261.10.1016/j.corsci.2014.11.028
  • Manga SS, Oyeleke SB, Librahim AD, Aliero AA, Bagudo AI. 2012. Influence of bacteria associated with corrosion of metal. Continent J Microbiol. 6:19–25.
  • Moradi M, Song Z, Yang L, Jiang J, He J. 2014. Effect of marine Pseudoalteromonas sp. on the microstructure and corrosion behaviour of 2205 duplex stainless steel. Corros Sci. 84:103–112.10.1016/j.corsci.2014.03.018
  • Nan L, Liu Y, Lü M, Yang K. 2008. Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy. J Mater Sci-Mater M. 19:3057–3062.10.1007/s10856-008-3444-z
  • Nan L, Xu D, Gu T, Song X, Yang K. 2015. Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli. Mater Sci Eng: C. 48:228–234.10.1016/j.msec.2014.12.004
  • Pardo A, Merino MC, Carboneras M, Viejo F, Arrabal R, Muñoz J. 2006. Influence of Cu and Sn content in the corrosion of AISI 304 and 316 stainless steels in H2SO4. Corros Sci. 48:1075–1092.10.1016/j.corsci.2005.05.002
  • Ren L, Nan L, Yang K. 2011. Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel. Mater Design. 32:2374–2379.10.1016/j.matdes.2010.11.030
  • Ren L, Yang K, Guo L, Chai H. 2012. Preliminary study of anti-infective function of copper-bearing stainless steel. Mater Sci Eng: C. 32:1204–1209.10.1016/j.msec.2012.03.009
  • San NO, Nazir H, Dönmez G. 2014. Microbially influenced corrosion and inhibition of nickel–zinc and nickel–copper coatings by Pseudomonas aeruginosa. Corros Sci. 79:177–183.10.1016/j.corsci.2013.11.004
  • Sharifahmdian O, Salimijazi HR, Fathi MH, Mostaghimi J, Pershin L. 2015. Relationshiop between surface properties and antibacterial behaviour of wire arc spray copper coatings. Surf coat Technol. 233:74–79.
  • Sourisseau T, Chauveau E, Baroux B. 2005. Mechanism of copper action on pitting phenomena observed on stainless steels in chloride media. Corros Sci. 47:1097–1117.10.1016/j.corsci.2004.05.024
  • Stern M, Geary AL. 1957. Electrochemical polarization. J Electrochem Soc. 104:56–63.10.1149/1.2428496
  • Sun D, Shahzad MB, Li M, Wang G, Xu D. 2015. Antimicrobial materials with medical application. Mater Technol. 30:b90–b95.
  • Teitzel GM, Parsek MR. 2003. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol. 69:2313–2320.10.1128/AEM.69.4.2313-2320.2003
  • Venzlaff H, Enning D, Srinivasan J, Mayrhofer KJJ, Hassel AW, Widdel F, Stratmann M. 2013. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros Sci. 66:88–96.10.1016/j.corsci.2012.09.006
  • Xiang H, Fan J, Liu D, Guo P. 2012. Effects of antibacterial aging treatment on microstructure and properties of copper-containing duplex stainless steel. Acta Metall Sinica. 48:1081–1088.10.3724/SP.J.1037.2012.00177
  • Xiang H, Huang W, Liu D, He F, Ruan F. 2010. Effects of aging temperature on the microstructure and property of 2906 super duplex stainless steel. Trans Mater Heat Treat. 31:86–90.
  • Xu D, Gu T. 2014. Carbon source starvation triggered more aggressive corrosion against carbon steel by Desulfovibrio vulgaris biofilm. Int Biodeter Biodegr. 91:74–81.10.1016/j.ibiod.2014.03.014
  • Xu D, Li Y, Song F, Gu T. 2013. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corros Sci. 77:385–390.10.1016/j.corsci.2013.07.044
  • Xu D, Wen J, Gu T, Raad I. 2012. Biocide cocktail consisting of glutaraldehyde, ethylene diamine disuccinate (EDDS), and methanol for the mitigation of souring and biocorrosion. Corrosion. 68:994–1002.10.5006/0605
  • Yuan SJ, Pehkonen SO. 2007. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study. Colloid Surf B. 59:87–99.10.1016/j.colsurfb.2007.04.020
  • Zhang P, Xu D, Li Y, Yang K, Gu T. 2015. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by Desulfovibrio vulgaris biofilm. Bioelectrochemistry. 101:14–21.10.1016/j.bioelechem.2014.06.010
  • Zou Y, Wang J, Zheng Y. 2011. Electrochemical techniques for determining corrosion rate of rusted steel in seawater. Corros Sci. 53:208–216.10.1016/j.corsci.2010.09.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.