Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 31, 2015 - Issue 7
1,151
Views
29
CrossRef citations to date
0
Altmetric
Articles

Polysulfone and polyacrylate-based zwitterionic coatings for the prevention and easy removal of marine biofouling

, , &
Pages 613-624 | Received 27 Mar 2015, Accepted 04 Aug 2015, Published online: 07 Sep 2015

References

  • Aldred N, Li G, Gao Y, Clare AS, Jiang S. 2010. Modulation of barnacle (Balanus amphitrite Darwin) cyprid settlement behavior by sulfobetaine and carboxybetaine methacrylate polymer coatings. Biofouling. 26:673–683.10.1080/08927014.2010.506677
  • Beaudoin G, Robertson D, Doherty R, Corren D, Staby B, Meyer L. 2010. Technological challenges to commercial-scale application of marine renewables. Oceanography. 23:32–41.10.5670/oceanog
  • Bedard R. 2008. Prioritized research, development, deployment and demonstration (RDD&D) needs: marine and other hydrokinetic renewable energy. Palo Alto, CA: Electric Power Research Institute.
  • Bodkhe RB, Stafslien SJ, Daniels J, Cilz N, Muelhberg AJ, Thompson SEM, Callow ME, Callow JA, Webster DC. 2015. Zwitterionic siloxane-polyurethane fouling-release coatings. Prog Org Coat. 78:369–380.10.1016/j.porgcoat.2014.07.011
  • Casse F, Stafslien SJ, Bahr JA, Daniels J, Finlay JA, Callow JA, Callow ME. 2007. Combinatorial materials research applied to the development of new surface coatings V. Application of a spinning water-jet for the semi-high throughput assessment of the attachment strength of marine fouling algae. Biofouling. 23:121–130.10.1080/08927010701189583
  • Chen S, Jiang S. 2008. A new avenue to nonfouling materials. Adv Mater. 20:335–338.10.1002/(ISSN)1521-4095
  • Cheng G, Xite H, Zhang Z, Chen S, Jiang S. 2008. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew Chem Int Ed. 47:8831–8834.10.1002/anie.v47:46
  • Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S. 2007. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 28:4192–4199.10.1016/j.biomaterials.2007.05.041
  • Colak S, Nelson CF, Nusslein K, Tew GN. 2009. Hydrophilic modifications of an amphiphilic polynorbornene and the effects on its hemolytic and antibacterial activity. Biomacromolecules. 10:353–359.10.1021/bm801129y
  • Colak S, Tew GN. 2012. Dual-functional ROMP-based betaines: effect of hydrophilicity and backbone structure on nonfouling properties. Langmuir. 28:666–675.10.1021/la203683u
  • Finlay JA, Schultz MP, Cone G, Callow ME, Callow JA. 2013. A novel biofilm channel for evaluating the adhesion of diatoms to non-biocidal coatings. Biofouling. 29:401–411.10.1080/08927014.2013.777046
  • Gao C, Li G, Xue H, Yang W, Zhang F, Jiang S. 2010. Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials. 31:1486–1492.10.1016/j.biomaterials.2009.11.025
  • Grippo M, Hlohowskyj I. 2012. Conceptual models of potential marine and hydrokinetic technology impacts on biological resources. Argonne, IL: Argonne National Laboratory.
  • Hayward JA, Chapman D. 1984. Biomembrane surfaces as models for polymer design - the potential for hemocompatibility. Biomaterials. 5:135–142.10.1016/0142-9612(84)90047-4
  • Hirota K, Murakami K, Nemoto K, Miyake Y. 2005. Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms. FEMS Microbiol Lett. 248:37–45.10.1016/j.femsle.2005.05.019
  • Ishihara K, Aragaki R, Ueda T, Watenabe A, Nakabayashi N. 1990. Reduced thrombogenicity of polymers having phospholipid polar groups. J Biomed Mater Res. 24:1069–1077.10.1002/(ISSN)1097-4636
  • Jiang SY, Cao ZQ. 2010. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater. 22:920–932.10.1002/adma.200901407
  • Kitano H, Nagaoka K, Tada S, Gemmei-Ide M. 2007. Structure of water in the vicinity of amphoteric polymers as revealed by Raman spectroscopy. J Colloid Interface Sci. 313:461–468.10.1016/j.jcis.2007.05.009
  • Kitano H, Tada S, Mori T, Takaha K, Gemmei-Ide M, Tanaka M, Fukuda M, Yokoyama Y. 2005. Correlation between the structure of water in the vicinity of carboxybetaine polymers and their blood-compatibility. Langmuir. 21:11932–11940.10.1021/la0515571
  • Krishnan S, Weinman CJ, Ober CK. 2008. Advances in polymers for anti-biofouling surfaces. J Mater Chem. 18:3405–3413.10.1039/b801491d
  • Leng C, Han X, Shao Q, Zhu Y, Li Y, Jiang S, Chen Z. 2014. In situ probing of the surface hydration of zwitterionic polymer brushes: structural and environmental effects. J Phys Chem C. 118:15840–15845.10.1021/jp504293r
  • Lewis AL. 2000. Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf B. 18:261–275.10.1016/S0927-7765(99)00152-6
  • Li G, Xue H, Cheng G, Chen S, Zhang F, Jiang S. 2008. Ultralow fouling zwitterionic polymers grafted from surfaces covered with an initiator via an adhesive mussel mimetic linkage. J Phys Chem B. 112:15269–15274.10.1021/jp8058728
  • Majumdar P, Crowley E, Htet M, Stafslien SJ, Daniels J, VanderWal L, Chisholm BJ. 2011. Combinatorial materials research applied to the development of new surface coatings xv: an investigation of polysiloxane anti-fouling/fouling-release coatings containing tethered quaternary ammonium salt groups. ACS Comb Sci. 13:298–309.10.1021/co200004m
  • Min K, Gao H, Matyjaszewski K. 2007. Use of ascorbic acid as reducing agent for synthesis of well-defined polymers by ARGET ATRP. Macromolecules. 40:1789–1791.10.1021/ma0702041
  • Patel JD, Iwasaki Y, Ishihara K, Anderson JM. 2005. Phospholipid polymer surfaces reduce bacteria and leukocyte adhesion under dynamic flow conditions. J Biomed Mater Res Part A. 73A:359–366.10.1002/(ISSN)1552-4965
  • Qian PY, Lau SCK, Dahms HU, Dobretsov S, Harder T. 2007. Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. Mar Biotechnol. 9:399–410.10.1007/s10126-007-9001-9
  • Rittschof D, Orihuela B, Stafslien S, Daniels J, Christianson D, Chisholm B, Holm E. 2008. Barnacle reattachment: a tool for studying barnacle adhesion. Biofouling. 24:1–9.10.1080/08927010701784920
  • Schultz MP, Bendick JA, Holm ER, Hertel WM. 2011. Economic impact of biofouling on a naval surface ship. Biofouling. 27:87–98.10.1080/08927014.2010.542809
  • Stafslien SJ, Bahr J, Daniels J, Christianson DA, Chisholm BJ. 2011. High-throughput screening of fouling-release properties: an overview. J Adhes Sci Technol. 25:2239–2253.10.1163/016942411X574934
  • Stafslien SJ, Bahr JA, Daniels JW, Wal LV, Nevins J, Smith J, Schiele K, Chisholm B. 2007. Combinatorial materials research applied to the development of new surface coatings VI: an automated spinning water jet apparatus for the high-throughput characterization of fouling-release marine coatings. Rev Sci Instrum. 78:072241–072246.
  • Stafslien SJ, Bahr JA, Feser JM, Weisz JC, Chisholm BJ, Ready TE, Boudjouk P. 2006. Combinatorial materials research applied to the development of new surface coatings I: a multiwell plate screening method for the high-throughput assessment of bacterial biofilm retention on surfaces. J Comb Chem. 8:156–162.10.1021/cc050047m
  • Stafslien SJ, Christianson D, Daniels J, VanderWal L, Chernykh A, Chisholm BJ. 2015. Combinatorial materials research applied to the development of new surface coatings XVI: fouling-release properties of amphiphilic polysiloxane coatings. Biofouling. 31:135–149.10.1080/08927014.2014.1003295
  • Stafslien S, Daniels J, Bahr J, Chisholm B, Ekin A, Webster D, Orihuela B, Rittschof D. 2012. An improved laboratory reattachment method for the rapid assessment of adult barnacle adhesion strength to fouling-release marine coatings. J Coat Technol Res. 9:651–665.10.1007/s11998-012-9409-7
  • Stafslien S, Daniels J, Chisholm B, Christianson D. 2007. Combinatorial materials research applied to the development of new surface coatings III. Utilisation of a high-throughput multiwell plate screening method to rapidly assess bacterial biofilm retention on antifouling surfaces. Biofouling. 23:37–44.10.1080/08927010601127311
  • Sule P, Wadhawan T, Carr NJ, Horne SM, Wolfe AJ, Pruss BM. 2009. A combination of assays reveals biomass differences in biofilms formed by Escherichia coli mutants. Lett Appl Microbiol. 49:299–304.10.1111/lam.2009.49.issue-3
  • Yan J, Hickner MA. 2010. Anion exchange membranes by bromination of benzylmethyl-containing poly(sulfone)s. Macromolecules. 43:2349–2356.10.1021/ma902430y
  • Yan J, Moore HD, Hibbs MR, Hickner MA. 2013. Synthesis and structure-property relationships of poly(sulfone)s for anion exchange membranes. J Polym Sci Part B-Polym Phys. 51:1790–1798.10.1002/polb.23331
  • Zhang Z, Chao T, Chen S, Jiang S. 2006. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir. 22:10072–10077.10.1021/la062175d
  • Zhang Z, Chen SF, Chang Y, Jiang SY. 2006. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J Phys Chem B. 110:10799–10804.10.1021/jp057266i
  • Zheng J-m, Chin W-C, Khijniak E, Khijniak E Jr, Pollack GH. 2006. Surfaces and interfacial water: evidence that hydrophilic surfaces have long-range impact. Adv Colloid Interface Sci. 127:19–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.